Severe thunderstorms in Texas and Oklahoma

May 20th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the development of widespread thunderstorms that produced tornadoes, large hail (up to 5.5 inches in diameter in Texas) and damaging winds (as high as 94 mph in Oklahoma) (SPC storm reports) across parts of Texas and Oklahoma on 20 May 2019.

The corresponding GOES-16 “Clean” Infrared Window (10.35 µm) images (below) indicated that cloud-top infrared brightness temperatures were frequently as cold as -70 to -80ºC (black to white to violet enhancement) with the more vigorous thunderstorms.

GOES-16 "Clean" Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 "Red" Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

Zoomed-in versions of the Visible images (above) and Infrared images (below) are centered at Childress, Texas — which provide a better view of the storms which produced the 5.5-inch hail (Visible | Infrared) at Wellington, Texas and the large tornado near Magnum, Oklahoma (Visible | Infrared | YouTube video).

GOES-16 "Clean" Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

One interesting aspect of this line of deep convection: it was effectively acting as an obstacle to the upstream southwesterly flow, resulting in the formation of a quasi-stationary band of gravity waves along its western edge — these waves were very evident in GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below).

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play MP4 animation]

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play MP4 animation]

GOES-16 Split Window Difference (10.3-12.3 µm) images (below) displayed the yellow signature of blowing dust in the vicinity of a cold front that was moving eastward across southeastern New Mexico and southwestern Texas. Blowing dust restricted surface visibility to 3 miles or less at El Paso in Texas and at Alamagordo and Artesia in New Mexico.

GOES-16 Split Window Difference (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window Difference (10.3-12.3 µm) images [click to play animation | MP4]

During the subsequent overnight hours, these thunderstorms produced heavy rainfall from northern Oklahoma into southern Kansas, causing flash flooding — and flooding from rising rivers across that region on the following day were captured by the Suomi NPP VIIRS Flood Detection Product (below).

Suomi NPP VIIRS True Color and False Color RGB images, along with the Flood Detection Product [click to enlarge]

Suomi NPP VIIRS True Color and False Color RGB images, along with the Flood Detection Product [click to enlarge]

The river flooding in northern/northwestern Oklahoma was also evident in a before/after comparison of Terra MODIS False Color RGB images from 15 May and 21 May (below). Water appears as darker shades of blue in the False Color images.

Terra MODIS False Color RGB images over northern Oklahoma on 15 May and 21 May [click to enlarge]

Terra MODIS False Color RGB images over northern Oklahoma on 15 May and 21 May [click to enlarge]