GOES-16 water vapor imagery over far northern Canada

August 1st, 2018 |

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play animation | MP4]

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play animation | MP4]

Animations of GOES-16 (GOES-East) Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (above) showed features moving eastward across Nunavut in northern Canada on 01 August 2018. These images covered the far northern portion of the GOES-16 Full Disk view in AWIPS, and depicted frontal wave disturbances within the polar jet stream over that region.

Due to the large satellite viewing angle or “zenith angle”, the 2 km water vapor image pixel dimension (at satellite sub-point) increased to around 6.4 km or 4 miles (below).

Magnified view of GOES-16 Mid-level (6.9 µm) Water Vapor image, showing the pixel dimension over Nunavut, Canada [click to enlarge]

Magnified view of a GOES-16 Mid-level (6.9 µm) Water Vapor image, showing the pixel dimension over Nunavut, Canada [click to enlarge]

Another effect of the large satellite view angle was a shift of the Water Vapor weighting functions to higher altitudes — plots of the 7.3 µm, 6.9 µm and 6.2 µm weighting functions calculated using 12 UTC rawinsonde data from Baker Lake, Nunavut are shown below. These plots depict the layers of the atmosphere from which emitted radiation was detected by each of the 3 Water Vapor spectral bands on the ABI instrument.

GOES-16 Water Vapor weighting function plots calculated using 12 UTC rawinsonde data from Baker Lake, Nunavut [click to enlarge]

GOES-16 Water Vapor weighting function plots calculated using 12 UTC rawinsonde data from Baker Lake, Nunavut [click to enlarge]