Flooding in the Midwest and lower Ohio River Valley

February 26th, 2018 |

GOES-16 0.86 µm “Veggie” Band Imagery at 1902 UTC on 12 and 26 February 2018 (Click to enlarge)

Solar radiation at 0.86 µm is strongly absorbed by water on the surface, but reflected by land. There is therefore a big contrast in GOES-16 “Veggie” Band imagery between rivers and adjacent land, and that contrast difference can easily identify regions of inundation. The toggle above compares imagery from 26 February 2018 and from 12 February 2018 over the lower Ohio River Valley. Significant widening of many waterways is apparent in the 0.86 µm imagery on 26 February, especially over southern Indiana, a result of both snow melt and abundant precipitation in the past 7 days, shown below (from this link). This has caused many stream gauges to show Moderate (Red gauges) to Major (Purple Gauges) flooding (image from this link), also shown below.  A zoomed-in image over northern Indiana, at bottom, shows the major flooding along the Kankakee River.

Observed precipitation for the 7 days ending at 1200 UTC on 26 February 2018 (Click to enlarge)

Stream Gauge Observations at 1200 UTC on 26 February 2018 (Click to enlarge)

GOES-16 0.86 µm “Veggie” Band Imagery at 1902 UTC on 26 February 2018 (Click to enlarge). Green Arrows highlight the Kankakee River, in flood.


=============== Added, 27 February 2018 ===================
Suomi NPP’s Flood Product, produced via CSPP using data from a Direct Broadcast site (at UW-Madison) is shown below. Flooded regions in the lower Ohio River/Mississippi River Valley and surroundings are indicated by shading in yellow to red.

Suomi NPP Flood Product, 1923 UTC on 26 February 2018 (Click to enlarge)

Some of these areas of river flooding could also be seen in a comparison of Suomi NPP VIIRS True-color and False-color Red-Green-Blue RGB images (below) — the False-color image uses the Near-Infrared 2.2 µm and 0.86 µm bands for the Red and Green contributions, and highlights water as shades of blue.

Suomi NPP VIIRS True-color and False-color images [click to enlarge]

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

Severe weather in the Mid-South, and heavy snow in the Upper Midwest

February 24th, 2018 |

GOES-16 Mid-level Water Vapor (6.9 µm), with hourly plots of surface weather type [click to play Animated GIF | MP4 also available]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with hourly plots of surface weather type [click to play Animated GIF | MP4 also available]

GOES-16 (GOES-East) Mid-level Water Vapor (6.9 µm) images (above) showed the flow of moisture from the lower Mississippi Valley into the Ohio Valley on 24 February 2018 — this fueled the development of flooding rainfall and severe thunderstorms (for more details, see the Satellite Liaison Blog). A special 21 UTC sounding from Little Rock AR indicated 37.3 mm or 1.47 inches of Total Precipitable Water (TPW) within the atmospheric column.

1-minute interval Mesoscale Sector GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (below) revealed the development of a small supercell thunderstorm just north of the Kentucky/Tennessee border — this storm produced an EF-2  tornado that was responsible for 1 fatality (NWS Louisville damage survey). This (along with another in Arkansas) was the first US tornado-related death in 283 days (a new record in terms of length), with the last occurring in Wisconsin on 16 May 2017.

GOES-16 "Red" Visible<em> (0.64 µm, left)</em> and "Clean" Infrared Window <em>(10.3 µm, right)</em> images, with hourly surface reports plotted in yellow and SPC storm reports plotted in red [click to play Animated GIF | <a href="http://cimss.ssec.wisc.edu/goes/blog/wp-content/uploads/2018/02/180224_goes16_visible_infrared_spc_storm_reports_KY_TN_severe_anim.mp4"><strong>MP4</strong></a> also available]

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.3 µm, right) images, with hourly surface reports plotted in yellow and SPC storm reports plotted in red [click to play Animated GIF | MP4 also available]

Farther to the north, bands of elevated convection (oriented generally west to east) developed across Minnesota and Wisconsin, as seen in GOES-16 Visible (0.64 µm) and Infrared Window (10.3 µm) images (below). Snowfall rates were 1-2 inches per hour at some locations, with many storm total accumulations of 7 to 9 inches. Note the small-scale “ripple structure” that was present along the tops of many of these convective bands (orthogonal to the long axis of each band).

GOES-16

GOES-16 “Red” Visible (0/64 µm) images [click to play animation]

GOES-16

GOES-16 “Clean ” Infrared Widow (10.3 µm) images [click to play animation]

Comparisons of Terra and Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images (below) also showed these bands of elevated convection that helped to enhance snowfall rates. The layer of instability aloft was evident on the 00 UTC sounding from Chanhassen MN.

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Eruption of Mount Sinabung volcano

February 19th, 2018 |

Himawari-8 RGB images [click to play animation]

Himawari-8 RGB images [click to play animation]

An explosive eruption of Mount Sinabung began at 0153 UTC on 19 February 2018. Himawari-8 False-color Red-Green-Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed the primary plume of high-altitude ash moving northwestward, with ash at lower altitudes spreading out to the south and southeast of the volcano.

Mutli-spectral retrievals of Ash Cloud Height (below) indicated that the explosive eruption injected volcanic ash to altitudes generally within the 12-18 km range, possibly reaching heights of 18-20 km. Advisories issued by the Darwin VAAC listed the ash height at 45,000 feet (13.7 km).

Himawari-8 Ash Height product [click to play animation]

Himawari-8 Ash Height product [click to play animation]

Ash Loading values (below) were also very high within the high-altitude portion of the plume.

Himawari-8 Ash Loading product [click to play animation]

Himawari-8 Ash Loading product [click to play animation]

The Ash Effective Radius product (below) indicated that very large particles were present in the portion of the plume immediately downwind of the eruption site.

Himawari-8 Ash Effective Radius product [click to play animation]

Himawari-8 Ash Effective Radius product [click to play animation]

In a comparison of Himawari-8 “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.4 µm) images (below), note the very pronounced warm thermal anomaly or “hot spot” (large cluster of red pixels) on the 0150 UTC image — Himawari-8 was actually scanning that location at 01:54:31 UTC, just after the 0153 UTC eruption. Prior to the main eruption (beginning at 0120 UTC), a very narrow volcanic cloud — likely composed primarily of condensed steam — was seen streaming rapidly southward from the volcano summit.

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left), Shortwave Infrared (3.9 µm, center) and “Clean” Infrared Window (10.4 µm, right) images [click to play Animated GIF | MP4 also available]

The coldest Himawari-8 cloud-top infrared brightness temperature was -73 ºC at 0300 UTC, which roughly corresponded to an altitude of 15 km on nearby WIMM (Medan) rawinsonde data at 00 UTC (below).

Medan, Indonesia rawinsonde data at 00 UTC on 19 February [click to enlarge]

Medan, Indonesia rawinsonde data at 00 UTC on 19 February [click to enlarge]

A Terra MODIS True-color RGB image viewed using RealEarth is shown below. The actual time of the Terra satellite overpass was 0410 UTC.

Terra MODIS True-color RGB image [click to enlarge]

Terra MODIS True-color RGB image [click to enlarge]

An animation of Himawari-8 True-color RGB images can be seen here.

Cyclone Kelvin makes landfall in Australia

February 18th, 2018 |

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Western Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]