Ex-hurricane Ophelia over Ireland and the United Kingdom

October 16th, 2017 |

Meteosat-10 Water Vapor (6.25 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

Meteosat-10 Water Vapor (6.25 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

After reaching Category 3 intensity over the eastern Atlantic Ocean on 14 October, Hurricane Ophelia (storm track) rapidly underwent transition to an extratropical storm which eventually spread high winds across much of Ireland and the United Kingdom on 16 October 2017. EUMETSAT Meteosat-10 upper-level Water Vapor (6.25 µm) (above) and lower-level Water Vapor (7.35 µm) images (below) revealed the familiar “scorpion tail” signature of a sting jet (reference). Hourly wind gusts (in knots) from primary reporting stations are plotted in red.

Meteosat-10 Water Vapor (7.35 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

Meteosat-10 Water Vapor (7.35 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

Two sites with notable wind gusts were Cork, Ireland (67 knots at 0930 UTC) and Valley, UK (70 knots at 1500 UT), shown below. In fact, a wind gust of 103 knots (119 mph or 191 km/hour) was reported at the Fastnet Rock Lighthouse off the southwest coast of Ireland.

Time series plot of surface data from Cork, Ireland [click to enlarge]

Time series plot of surface data from Cork, Ireland [click to enlarge]

Time series plot of surface data from Valley, United Kingdom [click to enlarge]

Time series plot of surface data from Valley, United Kingdom [click to enlarge]

———————————————————————————-

Terra and Aqua MODIS true-color images [click to enlarge]

Terra and Aqua MODIS true-color images [click to enlarge]

In a toggle between Terra MODIS (overpass time around 1159 UTC) and Aqua MODIS (overpass time around 1345 UTC) true-color Red-Green-Blue (RGB) imagery (above), a somewhat hazy appearance was seen over the Irish Sea on the Terra MODIS image. This was due to an airborne plume of sand from the Sahara Desert (UK Met Office story).

In fact, blowing sand was observed about 3 hours later at Isle of Man, from 1520-1620 UTC — during that time period their surface winds gusted to 68 knots (78 mph), and surface visibility was reduced to 2.2 miles (below).

Time series plot of surface data from Isle of Man [click to enlarge]

Time series plot of surface data from Isle of Man [click to enlarge]

42-year anniversary of the GOES program

October 16th, 2017 |

A sample Visible (0.65 µm) image from GOES-1 is shown below (courtesy of Tim Schmit, NOAA/NESDIS/ASPB and the SSEC Data Center), after the satellite had been positioned over the Indian Ocean to support the Global Atmospheric Research Program. The first GOES-1 image was broadcast on 25 October 1975.

GOES-1 Visible (0.65 µm) image, 0930 UTC on 01 January 1979 [click to enlarge]

GOES-1 Visible (0.65 µm) image, 0930 UTC on 01 January 1979 [click to enlarge]