Hurricane Earl makes landfall in Belize

August 4th, 2016 |
GOES-14 10.7 µm Infrared Window images, hourly from 0115 through 1015 UTC on 4 August 2016 [click to play animation]

GOES-14 10.7 µm Infrared Window images, hourly from 0115 through 1015 UTC on 4 August 2016 [click to play animation]

Hurricane Earl made landfall around 0600 UTC on 4 August in Belize. The hourly animation from GOES-14, above, shows a rapid warming of the coldest cloud tops over Earl after landfall, as commonly happens. GOES-14 is out of storage to support SRSO-R Operations beginning Tuesday August 9.

The GOES-14 image at landfall shows coldest cloud tops on the north side of the storm. A timely Metop-A overpass (times available at this site) from several hours before landfall provided ASCAT winds, below, that also show strongest winds to the north side of this storm.

Metop-A ASCAT Scatterometer Winds, 0238 UTC 4 August 2016 [click to enlarge]

Metop-A ASCAT Scatterometer Winds, 0238 UTC 4 August 2016 [click to click to enlarge]

Although the strong winds of Earl have diminished now that the storm is over land, Total Precipitable Water values, below, (showing MIRS data, available at this site) remain high and flooding continues to be a threat. Earl is forecast to move along the southern tip of the Bay Campeche starting tomorrow. For more details see the National Hurricane Center website.

Morphed MIRS Total Precipitable Water, 0600 UTC on 4 August 2016 [click to enlarge]

Morphed MIRS Total Precipitable Water, 0600 UTC on 4 August 2016 [click to click to enlarge]

Three geostationary satellites viewed Earl as it moved across the southern Yucatan peninsula. GOES-15, GOES-14 and GOES-13 visible imagery from near 1200 UTC is shown below.

GOES-15, GOES-14, GOES-13 (left, center,right) Visible Imagery of Earl over Belize and Mexico, ~1200 UTC on 4 August 2016 [click to enlarge]

GOES-15, GOES-14, GOES-13 (left, center,right) Visible Imagery of Earl over Belize and Mexico, ~1200 UTC on 4 August 2016 [click to click to enlarge]

Two Geostationary Satellites viewing a system approximately equidistant from both satellites allowed for stereoscopic imagery to be created, below.

GOES-13 and GOES-14 Visible Imagery (0.62 µm), 1415 - 2115 UTC on 4 August 2016 [click to play animation]

GOES-13 and GOES-14 Visible Imagery (0.62 µm), 1415 – 2115 UTC on 4 August 2016 [click to play animation]