Hourly GOES Animations from August 2015

September 1st, 2015 |


The YouTube video embedded above shows GOES-13 Water Vapor (6.5 µm) images each hour for all of August 2015. The 10.7 µm Infrared window channel animation is shown below. Both show a remarkable lack of thunderstorm activity in the Caribbean Sea.


In addition, hourly Water Vapor (6.5 µm) and Infrared window channel (10.7 µm) imagery from GOES-15 is shown below.



The GOES-15 imagery includes the northern fringe of the Intertropical Convergence Zone, and the active Eastern Pacific hurricane season is apparent, including several storms that have threatened the state of Hawai’i. The atypically strong August storm that hit the Pacific Northwest is also seen at the end of the animations.

Himawari-8 true-color imagery

August 6th, 2015 |
Himawari-8 true-color images (click to play YouTube animation)

Himawari-8 true-color images (click to play YouTube animation)

A sequence of 10-minute interval Himawari-8 true-color Red/Green/Blue (RGB) images covering the period 01 August to 06 August 2015 is shown above (also available as a very large 721 MByte animated GIF, a 66 Mbyte MP4 movie file, or an alternate version here on YouTube). One of the most prominent features seen is Typhoon Soudelor in the West Pacific Ocean, which reached Category 5 Super Typhoon intensity late in the day on 03 August, as indicated in a plot of the Advanced Dvorak Technique intensity estimate from the CIMSS Tropical Cyclones site (below).

Advanced Dvorak Technique (ADT) intensity estimation plot for Super Typhoon Soudelor (click to enlarge)

Advanced Dvorak Technique (ADT) intensity estimation plot for Super Typhoon Soudelor (click to enlarge)

Other features of interest seen during this 6-day animation include hazy-white plumes of urban pollution and/or wildfire smoke streaming eastward off the Asian continent, as well as light brown or tan-colored plumes of blowing dust/sand originating from the interior desert regions.

The Himawari-8 AHI data are provided by the JMA, acquired by NOAA/NESDIS/STAR, and processed at SSEC/CIMSS. The true-color images use information from AHI bands 1, 2, and 3, combined with a customized contrast stretch algorithm. No background image was used.

Typhoon Soudelor in the Pacific

August 5th, 2015 |


The animation above shows two-plus days of 10.35 µm Infrared imagery (from Himawari-8) of Typhoon Soudelor over the western Pacific Ocean. The animation of 2.5-minute interval images is from the Himawari-8 Target Sector that shifts as the Typhoon moves. The animation shows significant strengthening to Category 5 intensity and subsequent weakening as the storm undergoes an eyewall replacement cycle (ERC). That ERC is apparent in the MIMIC morphed microwave imagery, below. In addition, an SST Analysis from the CIMSS Tropical Cyclones site shows the storm traversing an area of relatively cooler Sea Surface Temperatures. Strengthening is expected in the next days as the storm approaches Taiwan.

Morphed Microwave Imagery centered on Soudelor, 1200 UTC 3 August - 1200 UTC 5 August 2015 [click to enlarge]

Morphed Microwave Imagery centered on Soudelor, 1200 UTC 3 August – 1200 UTC 5 August 2015 [click to enlarge]

A visible animation (0.52 µm, 2.5-minute time steps) from Himawari-8, below, (available here as an mp4, or here on YouTube) during the day on 4 August, shows a relatively clear eye with embedded vortices. In addition, tranverse banding at the cirrus level is obvious.

Himawari-8 0.52 µm imagery, 3-4 August 2015 [click to play animation]

Himawari-8 0.52 µm imagery, 3-4 August 2015 [click to play 100+ Megabyte animation]

Suomi NPP overflew Soudelor during the night on 4 August. The toggle between the VIIRS Day/Night Band visible (0.70 µm) image and the Infrared (11.45 µm) image is shown below (courtesy William Straka, SSEC). The three-quarter full moon supplied ample illumination to yield a very crisp visible image at night.

Suomi NPP VIIRS Day/Night Band visible imager (0.70 µm) and infrared (11.45 µm) image at 1608 UTC 4 August 2015 [click to enlarge]

Suomi NPP VIIRS Day/Night Band visible image (0.70 µm) and infrared (11.45 µm) image at 1608 UTC 4 August 2015 [click to enlarge]

Chan-Hom approaches the coast of China

July 10th, 2015 |


The video above shows 5 hours of Himawari-8 10.35 µm Infrared imagery from Typhoon Chan-Hom as it moves through the Yellow Sea towards the coast of China (original animated gif here; mp4 here). The location of Shanghai is indicated in the first frame, and this blog post talks about the history of typhoon landfalls near Shanghai. The appearance of the storm in the animation above is relatively constant.

Himawari-8 10.35 µm infrared imagery, 1447-2002 UTC on 6 July 2015 (Click to animate)

Himawari-8 6.2 µm (top), 6.9 µm (middle) and 7.3 µm (bottom) water vapor infrared imagery, 0000 UTC 8 July 2015 – 1500 UTC 10 July 2015 (click to animate)

The three water vapor channels from Himawari-8, above, over the course of the past 3 days show a steady northwestward motion and a decrease in the cold cloud tops surrounding the storm, consistent with the weakening that has been observed after peak intensity at ~1500 UTC on July 9. Typhoon Nangka remains southeast of Chan-Hom; Typhoon Linfa has dissipated after having made landfall over south China. Chan-Hom’s path (below) is over progressively colder water and significant intensification is not expected before landfall.

Sea-Surface Temperatures over the Yellow Sea, along with Chan-Hom's past and projected path (Click to enlarge)

Sea-Surface Temperatures over the Yellow Sea, along with Chan-Hom’s past and projected path (click to enlarge)

A DMSP SSMIS 85 GHz microwave image at 0946 UTC on 10 July, below, showed that Category 3 Typhoon Chan-Hom was undergoing an eyewall replacement cycle as the small inner eyewall was being replaced by a much larger outer eyewall. Also on the image are 1244 UTC Metop ASCAT surface scatterometer winds, which displayed a large area with winds in the 50-59.9 knot range along the western periphery of the tropical cyclone.

DMSP SSMIS microwave image at 0946 UTC, and Metop ASCAT winds at 1244 UTC (click to enlarge)

DMSP SSMIS microwave image at 0946 UTC, and Metop ASCAT winds at 1244 UTC (click to enlarge)