Eruption of Volcán de Fuego in Guatemala

February 1st, 2018 |

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm, top), Near-Infrared “Cloud Particle Size” (2.24 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images [click to animate]

After a series of occasional weak emissions during the previous month, a small eruption of Volcán de Fuego began during the pre-dawn hours on 01 February 2018. The thermal anomaly or “hot spot” could be seen on GOES-16 (GOES-East) Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (above). In terms of the two Near-Infrared bands, even though the 1.61 µm band has better spatial resolution (1 km at satellite sub-point), the 2-km resolution 2.24 µm band is spectrally located closer to the peak emitted radiance of very hot features such as active volcanoes or large fires.

Multi-spectral retrievals of Ash Cloud Height from the NOAA/CIMSS Volcanic Cloud Monitoring site (below) indicated that volcanic ash extended to altitudes in the 4-6 km range (yellow to green enhancement), with isolated 7 km pixels at 1315 UTC. The product also showed the effect of a burst of southwesterly winds just after 11 UTC, which began to transport some of the ash northeastward (as mentioned in the 1332 UTC advisory).

GOES-16 Ash Height product [click to animate]

GOES-16 Ash Height product [click to animate]

At 1624 UTC, a 30-meter resolution Landsat-8 False-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the primary ash plume drifting to the west, with some lower-altitude ash spreading out northward and southward. A thermal anomaly was also evident at the summit of the volcano.

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Pyrocumulonimbus cloud in Argentina

January 29th, 2018 |

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm) images [click to play animation]

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm, bottom) images [click to play animation]

A large cluster of fires burning in central Argentina became hot enough to generate a brief pyrocumulonimbus (pyroCb) cloud on 29 January 2018; according to media reports, on that day there were winds of 55 km/hour (34 mph) and temperatures of 37 ºC (98.6 ºF) in the vicinity of these La Pampa province fires. GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (above; also available as an MP4 animation) showed the smoke plumes, fire thermal anomalies or “hot spots” (red pixels) and the cold cloud-top infrared brightness temperatures, respectively. The minimum 10.3 µm temperature was -32.6 ºC at 1745 UTC. Note the relatively warm (darker gray) appearance on the 3.9 µm image — this is a characteristic signature of pyroCb clouds tops, driven by the aerosol-induced shift toward smaller ice particles (which act as more efficient reflectors of incoming solar radiation).

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the dense lower-tropospheric smoke drifting southward and southeastward from the fire source region, as well as the narrow upper-tropospheric anvil of the pyroCb cloud. Suomi NPP VIIRS fire detection locations are plotted as red dots on the final zoomed-in image. The actual time of the Aqua satellite pass over Argentina was 1812 UTC.

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

According to Worldview the coldest MODIS Infrared Window (11.0 µm) cloud-top  brightness temperature was -41.2 ºC, thus surpassing the -40 ºC threshold that is generally accepted to classify it as a pyroCb. This is believed to be the first confirmed pyroCb event in South America.

Approximately 120 km north-northeast of the pyroCb cloud, rawinsonde data from Santa Rosa, Argentina (below) indicated that the -41 ºC cloud-top temperature corresponded to altitudes in the 10.8 to 11.6 km range. The air was very dry at that level in the upper troposphere, contributing to the rapid dissipation of the pyroCb cloud material as seen in GOES-16 imagery.

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

48-hour HYSPLIT forward trajectories originating from the center of the pyroCb cloud at altitudes of 7, 9 and 11 km (below) suggested that a rapid transport of smoke over the adjacent offshore waters of the Atlantic Ocean was likely at those levels.

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

On 30 January, Suomi NPP OMPS Aerosol Index values (below; courtesy of Colin Seftor, SSAI at NASA Goddard) were as high as 4.3 over the South Atlantic (at 41.81º South latitude, 53.22º West longitude, 17:31:34 UTC) — consistent with the HYSPLIT transport originating at 7 km.

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Additional Suomi NPP VIIRS True-color and OMPS Aerosol Index images can be found on the OMPS Blog.

===== 01 February Update =====

This analysis of CALIPSO CALIOP data (courtesy of Mike Fromm, NRL) suggests that the upper-tropospheric smoke from this pyroCb event was transported as far as the eastern South Atlantic Ocean by 02 UTC on 01 February, having ascended to altitudes in the 9-10 km range.

Eruption of the Mayon Volcano in the Philippines

January 22nd, 2018 |

Himawari-8 False-color RGB images [click to animate]

Himawari-8 False-color RGB images [click to animate]

The first in a renewed series of eruptions of the Mayon Volcano in the Philippines began around 0450 UTC on 22 January 2018. As seen in Himawari-8 False-color Red-Green-Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above), the ash cloud was transported to the northwest.

Multi-spectral retrievals of the Ash Cloud Height (below) indicated that the ash reached altitudes of at least 10 km (dark blue).

Himawari-8 Ash Cloud Height product [click to animate]

Himawari-8 Ash Cloud Height product [click to animate]

A plot of rawinsonde data from nearby Legaspi at 00 UTC on 22 January (below) indicated that the 10 km altitude corresponded to a pressure of 285 hPa.

Plot of rawinsonde data from Legaspi, Philippines [click to enlarge]

Plot of rawinsonde data from Legaspi, Philippines [click to enlarge]

A Suomi NPP VIIRS True-color RGB image from RealEarth (below) revealed some of the lower-altitude ash (shades of tan to brown) drifting toward the west at the satellite overpass time of 0507 UTC. Thermal anomalies — signatures of hot lava flows — are indicated by red dots.

Suomi NPP VIIRS True-color RGB image [click to enlarge]

Suomi NPP VIIRS True-color RGB image [click to enlarge]

Flooding in Southern California

January 9th, 2018 |

1-minute GOES-16 Infrared Window (10.3 µm) images; with hourly reports of surface weather type plotted in yellow [click to play MP4 animation]

1-minute GOES-16 Infrared Window (10.3 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

An onshore flow of moisture (MIMIC TPW) in tandem with forcing for ascent with the approach of an upper-level low and a surface cold/occluded front brought heavy rainfall and some higher-elevation snowfall (NWS LOX/SGX | WPC) to much of Southern California on 09 January 2018. To help monitor the event, a GOES-16 (GOES-East) Mesoscale Sector was positioned over the region, providing images at 1-minute intervals. “Clean” Infrared Window (10.3 µm) images (above) showed the colder clouds associated with periods of moderate to heavy rainfall. Some of this precipitation fell over burn scar areas from wildfires that occurred in December 2017 — including the Thomas fire, which was the largest on record for the state of California — resulting in numerous mud/debris slides that caused at least 17 fatalities, destroyed/damaged hundreds of homes, and closed many streets and highways.

GOES-16 “Red” Visible (0.64 µm) images (below) showed some of the features which helped produce heavier rainfall and snowfall during the daylight hours on 09 January.

1-minute GOES-16

1-minute GOES-16 “Red” Visible (0.64 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

The circulation of the upper-level low was easily seen on GOES-16 Mid-level Water Vapor (6.9 µm) images (below).

1-minute GOES-16 Water Vapor (6.9 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

1-minute GOES-16 Water Vapor (6.9 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

===== 10 January Update =====

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

On the following day, a toggle between Suomi NPP VIIRS True-color and False-color Red-Green-Blue (RGB) images from RealEarth (above) showed (1) the large burn scar from the Thomas Fire (shades of reddish-brown), and (2) snow cover in the higher terrain (darker shades of cyan) on the False-color image. The True-color image revealed sediment from runoff flowing into the nearshore waters from Santa Barbara to Oxnard (shades of brown to light green).

A closer look at the Thomas Fire burn scar was provided by 30-meter resolution Landsat-8 False-color RGB imagery (below), which showed thin filaments of muddy sediment just offshore, as well as fresh snow cover (shades of cyan) along or immediately adjacent to the northeastern edge of the burn scar (in the Hines Peak area). On 10 January, the fire was listed as 92% contained (100% containment was declared on 12 January).

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

===== 11 January Update =====

Suomi NPP VIIRS True-color images on 10 January and 11 January [click to enlarge]

Suomi NPP VIIRS True-color images on 10 January and 11 January [click to enlarge]

A comparison of Suomi NPP VIIRS True-color RGB images on 10 January and 11 January (above) showed that sediment was flowing farther offshore from the Thomas Fire burn scar area.

Farther to the south, offshore sediment transport was also seen in the San Diego area (below).

Suomi NPP VIIRS True-color image on 11 January [click to enlarge]

Suomi NPP VIIRS True-color image on 11 January [click to enlarge]