Cyclone Kelvin makes landfall in Australia

February 18th, 2018 |

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Western Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Large hail in Argentina

February 8th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and “Clean” Infrared Window (10.3 µm, bottom) images, with hourly surface reports (metric units) for Córdoba, Argentina [click to play animated GIF — MP4 also available]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (above) showed the development of severe thunderstorms which produced very large hail in Córdoba, Argentina on 08 February 2018. Distinct above-anvil plumes were evident on the Visible imagery, with pulses of overshooting tops exhibiting Infrared brightness temperatures in the -70 to -80ºC range (black to white enhancement). The hail reportedly began around 1930 UTC or 4:30 PM local time.

The above-anvil plumes could also be seen in GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images (below).

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images, with hourly surface reports (metric units) for Córdoba, Argentina [click to play animated GIF — MP4 also available]

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the thunderstorm just west of Córdoba around 1850 UTC.

Aqua MODIS True-color RGB image [click to enlarge]

Aqua MODIS True-color RGB image [click to enlarge]

According to the Worldview site, the coldest Aqua MODIS cloud-top infrared brightness temperature at that time was -78ºC (below).

Aqua MODIS True-color and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS True-color and Infrared Window (11.0 µm) images [click to enlarge]

A time series plot of surface observations at Córdoba (below) showed the warm temperatures and high dew points prior to the arrival of the thunderstorms; there were a number of hail reports between 19 UTC and 02 UTC (4 PM to 11 PM local time).

Time series of surface observations at Córdoba, Argentina [click to enlarge]

Time series of surface observations at Córdoba, Argentina [click to enlarge]

Eruption of Volcán de Fuego in Guatemala

February 1st, 2018 |

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm, top), Near-Infrared “Cloud Particle Size” (2.24 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images [click to animate]

After a series of occasional weak emissions during the previous month, a small eruption of Volcán de Fuego began during the pre-dawn hours on 01 February 2018. The thermal anomaly or “hot spot” could be seen on GOES-16 (GOES-East) Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (above). In terms of the two Near-Infrared bands, even though the 1.61 µm band has better spatial resolution (1 km at satellite sub-point), the 2-km resolution 2.24 µm band is spectrally located closer to the peak emitted radiance of very hot features such as active volcanoes or large fires.

Multi-spectral retrievals of Ash Cloud Height from the NOAA/CIMSS Volcanic Cloud Monitoring site (below) indicated that volcanic ash extended to altitudes in the 4-6 km range (yellow to green enhancement), with isolated 7 km pixels at 1315 UTC. The product also showed the effect of a burst of southwesterly winds just after 11 UTC, which began to transport some of the ash northeastward (as mentioned in the 1332 UTC advisory).

GOES-16 Ash Height product [click to animate]

GOES-16 Ash Height product [click to animate]

At 1624 UTC, a 30-meter resolution Landsat-8 False-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the primary ash plume drifting to the west, with some lower-altitude ash spreading out northward and southward. A thermal anomaly was also evident at the summit of the volcano.

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Pyrocumulonimbus cloud in Argentina

January 29th, 2018 |

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm) images [click to play animation]

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm, bottom) images [click to play animation]

A large cluster of fires burning in central Argentina became hot enough to generate a brief pyrocumulonimbus (pyroCb) cloud on 29 January 2018; according to media reports, on that day there were winds of 55 km/hour (34 mph) and temperatures of 37 ºC (98.6 ºF) in the vicinity of these La Pampa province fires. GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (above; also available as an MP4 animation) showed the smoke plumes, fire thermal anomalies or “hot spots” (red pixels) and the cold cloud-top infrared brightness temperatures, respectively. The minimum 10.3 µm temperature was -32.6 ºC at 1745 UTC. Note the relatively warm (darker gray) appearance on the 3.9 µm image — this is a characteristic signature of pyroCb clouds tops, driven by the aerosol-induced shift toward smaller ice particles (which act as more efficient reflectors of incoming solar radiation).

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the dense lower-tropospheric smoke drifting southward and southeastward from the fire source region, as well as the narrow upper-tropospheric anvil of the pyroCb cloud. Suomi NPP VIIRS fire detection locations are plotted as red dots on the final zoomed-in image. The actual time of the Aqua satellite pass over Argentina was 1812 UTC.

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

According to Worldview the coldest MODIS Infrared Window (11.0 µm) cloud-top  brightness temperature was -41.2 ºC, thus surpassing the -40 ºC threshold that is generally accepted to classify it as a pyroCb. This is believed to be the first confirmed pyroCb event in South America.

Approximately 120 km north-northeast of the pyroCb cloud, rawinsonde data from Santa Rosa, Argentina (below) indicated that the -41 ºC cloud-top temperature corresponded to altitudes in the 10.8 to 11.6 km range. The air was very dry at that level in the upper troposphere, contributing to the rapid dissipation of the pyroCb cloud material as seen in GOES-16 imagery.

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

48-hour HYSPLIT forward trajectories originating from the center of the pyroCb cloud at altitudes of 7, 9 and 11 km (below) suggested that a rapid transport of smoke over the adjacent offshore waters of the Atlantic Ocean was likely at those levels.

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

On 30 January, Suomi NPP OMPS Aerosol Index values (below; courtesy of Colin Seftor, SSAI at NASA Goddard) were as high as 4.3 over the South Atlantic (at 41.81º South latitude, 53.22º West longitude, 17:31:34 UTC) — consistent with the HYSPLIT transport originating at 7 km.

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Additional Suomi NPP VIIRS True-color and OMPS Aerosol Index images can be found on the OMPS Blog.

===== 01 February Update =====

This analysis of CALIPSO CALIOP data (courtesy of Mike Fromm, NRL) suggests that the upper-tropospheric smoke from this pyroCb event was transported as far as the eastern South Atlantic Ocean by 02 UTC on 01 February, having ascended to altitudes in the 9-10 km range.