Hail damage swath in South Dakota and Minnesota

July 4th, 2017 |

SPC storm report plots, from 12 UTC on 21 June to 12 UTC on 22 June 2017 [click to go to SPC storm reports list]

SPC storm report plots, from 12 UTC on 21 June to 12 UTC on 22 June 2017 [click to go to SPC storm reports list]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

As seen on the map of SPC storm reports from 21 June 2017 (above), nighttime thunderstorms (during the pre-dawn hours of 22 June) produced a swath of hail (as large as 2.0 inches in diameter) that damaged emerging crops at some locations across eastern South Dakota and southwestern Minnesota (NWS Aberdeen summary).

Nearly 2 weeks later, on 04 July, the hail damage swath was still apparent on GOES-16 imagery. In a comparison of “Blue” Visible (0.47 µm), “Red” Visible (0.64 µm) and Near-Infrared “Vegetation” (0.86 µm ) images (below), the northwest-to-southeast oriented hail damage swath was best seen on the 0.64 µm imagery (in part due to its higher spatial resolution, which is 0.5 km at satellite sub-point); healthy vegetation is more reflective at 0.86 µm, so the crop-damaged hail swath appears slightly darker in those images.

GOES-16

GOES-16 “Blue” Visible (0.47 µm, top), “Red” Visible (0.64 µm, middle) and Near-Infrared “Vegetation” (0.86 µm, bottom) images [click to play animation]

A signature of the hail damage swath was also seen in Near-Infrared “Snow/Ice” (1.61 µm) and Shortwave Infrared (3.9 µm) images (below). The hail damage swath warmed more quickly on the 3.9 µm imagery — exhibiting a darker black appearance with time — compared to the adjacent fields of healthy crops.

GOES-16

GOES-16 “Red” Visible (0.64 µm, top), Snow/Ice (1.61 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images [click to play animation]

Why was the hail damage swath also seen on the 1.61 µm “Snow/Ice” (Band 5) imagery? A look at the Spectral Response Functions for GOES-16 ABI  bands 3, 4, 5 and 6 — plotted with the reflectance of asphalt, dirt, grass and snow (below) — show that the 1.61 µm Band 5 happens to cover a portion of the radiation spectrum where there is a minor peak in grass relectance (denoted by the green plot).

Spectral Response Functions for GOES-16 ABI Bands 3, 4, 5 and 6, along with the reflectance of asphalt, dirt, grass and snow [click to enlarge]

Spectral Response Functions for GOES-16 ABI Bands 3, 4, 5 and 6, along with the reflectance of asphalt, dirt, grass and snow [click to enlarge]

======================================================

Aqua MODIS Land Surface Temperature product {click to enlarge]

Aqua MODIS Land Surface Temperature product {click to enlarge]

Regarding the warmer temperatures seen on GOES-16 Shortwave Infrared images, the 1-km resolution Aqua MODIS Land Surface Temperature product at 1738 UTC (above) revealed a 10º F difference between the warmer hail damage swath (which appeared to be about 100 miles in length) and adjacent fields of undamaged crops. A similar result was noted on 03 July by NWS Aberdeen (below).

A comparison of before (21 June) and after (02 July) Aqua MODIS true-color Red/Green/Blue (RGB) images from the SSEC MODIS Direct Broadcast site (below) clearly shows the hail damage path.

Aqua MODIS true-color RGB images, before (21 June) and after (02 July) the hail event [click to enlarge]

Aqua MODIS true-color RGB images, before (21 June) and after (02 July) the hail event [click to enlarge]

On 05 July a closer view of the hail scar was seen using a Suomi NPP VIIRS true-color RGB image from RealEarth (below).

Suomi NPP VIIRS true-color RGB image [click to enlarge]

Suomi NPP VIIRS true-color RGB image [click to enlarge]

Incidentally, on 02 July the Sentinel-2A satellite provided 10-meter resolution true-color imagery of the hail swath:

===== 07 July Update =====

The hail damage swath was also evident on a 30-meter resolution Landsat-8 false-color RGB image from 07 July:

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image, zoomed in on Castlewood, South Dakota [click to enlarge]

Landsat-8 false-color RGB image, zoomed in on Castlewood, South Dakota [click to enlarge]

Other examples of satellite-observed hail damage swaths can be seen here and here.

 

Eddy in Lake Michigan

April 8th, 2017 |

GOES-16 Visible (0.64 µm) images, with hourly surface and ship reports plotted in yellow [click to play animation]

GOES-16 Visible (0.64 µm) images, with hourly surface and ship reports plotted in yellow [click to play animation]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

GOES-16 Visible (0.64 µm) images (above) revealed the presence of an eddy in the high-turbidity nearshore waters of southern Lake Michigan on 08 April 2017. The animation was created using 5-minute “CONUS” Sector images; an animation using 1-minute Mesoscale Sector images is available here.

A sequence of Terra and Aqua MODIS true-color Red/Green/Blue (RGB) images viewed using RealEarth (below) showed that the eddy began to develop on 07 April.

Terra and Aqua MODIS true-color RGB images from 07 and 08 April [click to enlarge]

Terra and Aqua MODIS true-color RGB images from 07 and 08 April [click to enlarge]

Cyclone Debbie makes landfall in Queensland, Australia

March 28th, 2017 |

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [click to play animation]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [click to play animation]

Cyclone Debbie formed in the Coral Sea on 22 March 2017, and eventually intensified to a Category 3 storm (ADT | SATCON) as it moved southward toward Australia. Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed the eye of Debbie as it was making landfall in Queensland, near Prosperpine (YBPN).

Landsat-8 false-color, with Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [click to enlarge]

Landsat-8 false-color, with Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [click to enlarge]

The Landsat-8 satellite made an overpass of the eye at 2358 UTC (above), as a large convective burst had developed within the northern semicircle of the eyewall (which was also evident in the corresponding Himawari-8 Visible and Infrared Window images viewed using RealEarth).

Himawari-8 Infrared Window (10.4 µm) and GMI Microwave (85 GHZ) Images around 1430 UTC on 27 March [click to enlarge]

Himawari-8 Infrared Window (10.4 µm) and GMI Microwave (85 GHZ) Images around 1430 UTC on 27 March [click to enlarge]

Debbie was undergoing an eyewall replacement cycle as the storm center approached the coast — this was evident in Microwave (85 GHz) images from GMI at 1425 (above) and SSMIS at 2017 UTC (below) from the CIMSS Tropical Cyclones site.

Himawari-8 Infrared Window (10.4 µm) and DMSP-18 SSMIS Microwave (85 GHz) images around 2017 UTC on 27 March [click to enlarge]

Himawari-8 Infrared Window (10.4 µm) and DMSP-18 SSMIS Microwave (85 GHz) images around 2017 UTC on 27 March [click to enlarge]

The MIMIC Total Precipitable Water product (below; also available as an MP4 animation) showed copious tropical moisture associated with Cyclone Debbie, which led to rainfall accumulations as high as 780 mm (30.7 inches) — with rainfall rates up to 200 mm (7.9 inches) per hour — and record flooding along the coast from Brisbane to Lismore.

MIMIC Total Precipitable Water product [click to play animation]

MIMIC Total Precipitable Water product [click to play animation]

 

 

 

Eruption of Kambalny volcano in Kamchatka, Russia

March 25th, 2017 |

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [Click to play animation]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [Click to play animation]

The Kambalny volcano in far southern Kamchatka, Russia erupted around 2120 UTC on 24 March 2017. A Himawari-8 “Target Sector” was positioned over that region — providing rapid-scan (2.5-minute interval) imagery — as seen in a 2-panel comparison of AHI Visible (0.64 µm) and Infrared Window (10.4 µm) data covering the first 7 hours of the eruption (above). Ash plume infrared brightness temperatures quickly became -40ºC and colder (bright green enhancement).

Himarari-8 false-color RGB images [click to play animation]

Himarari-8 false-color RGB images [Click to play animation]

Himawari-8 false-color Red/Green/Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed the ash plume drifting south-southwestward during the subsequent nighttime hours. It is interesting to note the formation and subsequent northwestward motion of numerous contrails (darker green linear features) across the region, due to the close proximity of a major Tokyo flight corridor.

True-color RGB images from Terra MODIS, Suomi NPP VIIRS and Aqua MODIS, viewed using RealEarth (below) revealed the long ash plume during the late morning and early afternoon on 25 March. The dark signature of ash fall onto the snow-covered terrain was evident on the Terra and Aqua images, just west of the high-altitude ash plume.

Terra MODIS, Suomi NPP VIIRS and Aqua MODIS true-color RGB images [Click to enlarge]

Terra MODIS, Suomi NPP VIIRS and Aqua MODIS true-color RGB images [Click to enlarge]

26 March Update: a closer view of Terra MODIS true-color images from 25 and 26 March (below) showed that the perimeter of the darker gray surface ash fall signature had fanned out in both the west and east directions.

Terra MODIS truecolor RGB images from 25 and 26 March, with arrows indicating the perimeter of surface ash fall signatures on each day [Click to enlarge]

Terra MODIS truecolor RGB images from 25 and 26 March, with arrows indicating the perimeter of surface ash fall signatures on each day [Click to enlarge]