Sir Ivan Fire pyroCumulonimbus in New South Wales, Australia

February 12th, 2017

Himawari-8 0.64 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.4 µm Longwave Infrared Window (bottom) images [click to play animation]

Himawari-8 0.64 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.4 µm Longwave Infrared Window (bottom) images [click to play animation]

Himawari-8 Visible (0.64 µm), Shortwave Infrared (3.9 µm) and Longwave Infrared Window (10.4 µm) images (above / MP4 ; zoomed-in over fire source region: GIF / MP4) showed wildfires burning in New South Wales, Australia on 12 February 2017. The larger Sir Ivan Fire near Dunedoo produced a pyroCumulonimbus (pyroCb) cloud, which first cooled below the -40ºC Longwave Infrared brightness temperature “pyroCb threshold” at 0530 UTC (-47ºC) and quickly reached its minimum temperature of -56.6ºC at 0540 UTC. An animation of Himawari-8 true-color images is available here (courtesey of Dan Lindsey, RAMMB/CIRA).

Consecutive true-color images from Suomi NPP VIIRS (0402 UTC) and Aqua MODIS (0405 UTC) viewed using RealEarth (below) showed the large smoke plume about 1.5 hours prior to pyroCb development.

Suomi NPP VIIRS and Aqua MODIS true-color images [click to enlarge]

Suomi NPP VIIRS and Aqua MODIS true-color images [click to enlarge]

A high fire danger was well-anticipated across this portion of Australia:

Some ground-based photos of the pyroCb cloud:


Shamal Wind event across the Arabian Peninsula

February 5th, 2017

Daily composites of Suomi NPP VIIRS true-color images [click to play animation]

Daily composites of Suomi NPP VIIRS true-color images [click to play animation]

A Shamal Wind event affected the Persian Gulf and the Arabian Peninsula during the first few days of February 2017, as a strong cold front moved southward across the region. Daily composites of Suomi NPP VIIRS true-color Red/Green/Blue (RGB) images (source: RealEarth) during the 31 January – 05 February period (above) showed blowing dust eventually moving off the coast of Yemen and Oman and across the Gulf of Aden and the Arabian Sea (note the cold frontal arc clouds on 03 February). The strong Shamal winds on 03 February forced a suspension in the Dubai Desert Classic golf tournament the cancellation of Stage 4 of the Tour of Dubai bicycle race (Dubai meteorogram).

The cold air associated with the Shamal wind was especially evident at locations along the Persian Gulf during the 01-04 February period (below) — for example, the daily maximum temperature at  Abu Dhabi in the United Arab Emirates on 01 February was 31ºC (88ºF), while it was only 18ºC (64ºF) on 03 February. At Doha in Qatar, their minimum temperature was 9ºC (48ºF) — their all-time minimum is 4ºC (39ºF). Snow fell in the Oman / United Arab Emirates border lands, with 10 cm (3.9 inches) reported at Jabal Jais. In addition to Abu Dhabi, blowing dust/sand also restricted surface visibility to 2 miles or less at locations such as Abumusa Island and Fujairah.

Daily composites of Suomi NPP VIIRS true-color images, with METAR surface observations [click to enlarge]

Daily composites of Suomi NPP VIIRS true-color images, with METAR surface observations [click to enlarge]

Portland, Oregon heavy snow event

January 11th, 2017

GOES-15 Infrared Window (10.7 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Infrared Window (10.7 µm) images, with hourly reports of surface weather type [click to play animation]

A surface low moving inland (3-hourly surface analyses) helped to produce widespread rain and snow across much of Oregon and southern Washington during the 10 January11 January 2017 period. 4-km resolution GOES-15 (GOES-West) Infrared images (above) and Water Vapor images (below) showed the development of a deformation band that helped to focus and prolong moderate to heavy snowfall over the Portland, Oregon area (accumulations | historical perspective). The GOES-15 images are centered at Portland International Airport (station identifier KPDX).

GOES-15 Water Vapor (6.5 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Water Vapor (6.5 µm) images, with hourly reports of surface weather type [click to play animation]

1-km resolution GOES-15 Visible (0.63 µm) images (below) during the last few hours of daylight on 10 January revealed the shadowing and textured signature of numerous embedded convective elements moving inland, which were helping to enhance precipitation rates (and even produce thundersnow at a few locations, a phenomenon which is very unusual for the Pacific Northwest).

GOES-15 Visible (0.63 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Visible (0.63 µm) images, with hourly reports of surface weather type [click to play animation]

===== 12 January Update =====

As clouds cleared in the wake of the storm, a comparison of 375-meter resolution Suomi NPP VIIRS true-color and false-color Red/Green/Blue (RGB) images viewed using RealEarth (below) revealed the extent of the snow cover; snow appears as shades of cyan in the false-color image, in contrast to clouds which appear as shades of white. [Note: with 5 inches of snow remaining on the ground, a new record low temperature was set in Portland on 13 January]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

The fresh snowfall was also apparent in a 30-meter resolution Landsat-8 false-color RGB image (below) along the south face of Mount Hood (located about 98 miles or 158 km east of Portland). The ski slopes of Timberline Lodge and  Mount Hood Meadows received 13-14 inches of new snow during this event; the snow base depth at Timberline was greater than the average amount for this time of year.

Landsat-8 false-color RGB image [click to play zoom-in animation]

Landsat-8 false-color RGB image [click to play zoom-in animation]

Heavy rainfall and high-elevation snowfall in Hawai’i

December 2nd, 2016

GOES-15 Water Vapor (6.5 µm) images, with overlays of GFS model 500 hPa geopotential height [click to play animation]

GOES-15 Water Vapor (6.5 µm) images, with overlays of GFS model 500 hPa geopotential height [click to play animation]

6-hour interval GOES-15 (GOES-West) Water Vapor (6.5 µm) images with overlays of GFS model 500 hPa geopotential height (above) showed middle to upper tropospheric moisture that was being drawn northwestward toward Hawai’i by the circulation of a closed low centered southwest of the state during the 01-02 December 2016 period.

A closer view using 15-minute interval GOES-15 Water Vapor images (below) showed 2 distinct pulses of moisture moving across the eastern portion of the island chain. Due to the prolonged flow of moisture and the variable terrain, Flood Warnings and Winter Storm Warnings were issued for the Big Island of Hawai’i (as shown using RealEarth).

GOES-15 Water Vapor (6.5 µm) images, with hourly surface reports [click to play MP4 animation]

GOES-15 Water Vapor (6.5 µm) images, with hourly surface reports [click to play MP4 animation]

Hourly images of the MIMIC Total Precipitable Water (TPW) product (below) showed the large plume of moisture, which had its roots within the Intertropical Convergence Zone (ITCZ). Maximum TPW values in the vicinity of Hawai’i were in the 50-55 mm (2.0-2.2 inch) range. 24-hour rainfall amounts were as high as 6.27 inches on the island of Hawai’i and 3.67 inches on the island of Kauai.

MIMIC Total Precipitable Water product, with tropical surface analyses [click to play animation]

MIMIC Total Precipitable Water product, with tropical surface analyses [click to play animation]

===== 03 December Update =====

GOES-15 Visible (0.63 µm) images (below) provided glimpses of the snow-covered peaks of Mauna Kea and Mauna Loa (circled in red) on the Big Island of Hawai’i early in the day on 03 December.

GOES-15 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

GOES-15 Visible (0.63 µm) images, with hourly surface reports [click to play animation]