Subtropical cyclone formation off the coast of Chile

May 9th, 2018 |

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with hourly plots of surface weather [click to play MP4 animation]

A very unusual subtropical cyclone formed off the coast of Chile during the 07-08 May 2018 period (Weather Channel | Weather Underground). The system transitioned from a typical cold core baroclinic mid-latitude cyclone to a shallow warm core cyclone with some deep convection around the center of circulation. GOES-16 (GOES-East) “Clean” Infrared Window (10.3 µm) images (above) showed the evolution from 06 May to 09 May. The surface report plotted in the lower right corner of the images is Concepción, Chile.

A Suomi NPP VIIRS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) depicted the circulation once it had drifted to a position northwest of Santiago, Chile at 1839 UTC on 08 May.

Suomi NPP VIIRS Ttue-color RGB image [click to enlarge]

Suomi NPP VIIRS Ttue-color RGB image [click to enlarge]

The hourly MIMIC Total Precipitable Water product (below) initially showed a long ribbon of subtropical moisture which was being transported ahead of a cold front into the baroclinic low on 05 May — then during the transition to a subtropical low, a small pocket of modest TPW migrated slowly northward  with the surface circulation.

MIMIC Total Precipitable Water product [click to play animation | MP4]

MIMIC Total Precipitable Water product [click to play animation | MP4]

Eruptions of Kilauea in Hawai’i

May 5th, 2018 |

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly plots of surface reports [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly plots of surface reports [click to play MP4 animation]

Heightened seismic activity of the Kilauea volcano on the Big Island of Hawai’i had been ongoing since April 2018, but increased further in early May leading to a series of minor eruptions (Hawaiian Volcano Observatory | USGS) — and GOES-15 (GOES-West) Shortwave Infrared (3.9 µm) images (above) showed the nearly persistent thermal anomaly or “hot spot” (dark black to red enhancement) during the 03-05 May period. Among the numerous earthquakes, the strongest was an M6.9 which occurred at 2233 UTC on 04 May.

A nighttime image of Suomi NPP VIIRS Day/Night Band (0.7 µm) data viewed using RealEarth (below) revealed the bright glow from Kilauea, and also from the Leilani Estates subdivision where several fissure vents had opened (forcing some evacuations).

Suomi NPP VIIRS Day.Night Band (0.7 µm) images, with island boundary and Google Maps labels [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images, with the island boundary and Google Maps labels [click to enlarge]

A comparison of Suomi NPP VIIRS Day/Night Band images from 03 May and 04 May (below) showed the before/after difference in the bright signal emitted by the fissure vents near Leilani Estates.

Suomi NPP VIIRS Day/Night Band (0.7 µm) images from 03 May and 04 May [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images from 03 May and 04 May [click to enlarge]

===== 06 May Update =====

Eruptions of fissure vents became more continuous in the Leilani Estates subdivision on 06 May. A comparison of GOES-15 Visible and Shortwave Infrared images (below) showed a long volcanic plume streaming southwestward, with robust thermal anomaly activity at the plume source.

http://cimss.ssec.wisc.edu/goes/blog/wp-content/uploads/2018/05/G15_VIS_SWIR_HI_06MAY2018_960x640_B12_2018126_201500_0002PANELS_00002.GIF

GOES-15 Visible (0.63 µm, left) and Shortwave Infrared (3.9 µm, right) images, with hourly plots of surface reports [click to play animation | MP4]

An Aqua MODIS True-color Red-Green-Blue (RGB) image (below) provided a more detailed view of the volcanic plume at 0007 UTC on 07 May. Note the cluster of red thermal anomalies in the vicinity of the Leilani Estates subdivision (the source of the plume).

Aqua MODIS True-color RGB image [click to enlarge]

Aqua MODIS True-color RGB image, with VIIRS thermal anomalies plotted in red [click to enlarge]

Grass fires in northwest and southwest Oklahoma

April 12th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and Shortwave Infrared (3.9 µm, bottom) images, with hourly plots of surface reports [click to play MP4 animation]

1-minute Mesoscale Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above) showed the development and rapid spread of grass fires in northwest Oklahoma on 12 April 2018. Hot fire pixels are highlighted as red on the Shortwave Infrared images — and the rapid northeastward run of the larger fires was very evident. The intense heat of the fires produced pyrocumulus clouds, which could be seen on the Visible images. Additional images are available on the Satellite Liaison Blog.

SPC had highlighted parts of New Mexico, Colorado, Texas and Oklahoma as having conditions favorable for Extreme wildfire behavior due to strong winds, hot temperatures and very dry air behind a dryline boundary (below). Note that the surface temperature / dew point depression at Woodward, Oklahoma (KWWR) at 2255 UTC on 12 April was 100 ºF (temperature = 97 ºF, dew point = -2 ºF), with southwesterly winds gusting to 35 knots or 40 mph.

SPC Day 1 Fire Outlook [click to enlarge]

SPC Day 1 Fire Outlook [click to enlarge]

===== 13 April Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.9 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.9 µm) images [click to enlarge]

The fires in northwestern Oklahoma continued to burn into the following night — Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.9 µm) images at 0837 UTC or 3:37 AM local time (above) revealed the bright glow and hot fire pixels associated with the 2 large fire complexes in Woodward County (34 Complex Fire) and Dewey County (Rhea Fire). At least 2 fatalities (Wildfire Today | media report) have been attributed to the larger and longer-burning Rhea Fire in Dewey County (which had burned an estimated 241,280 acres by mid-day on 14 April).

During the following daytime hours of 13 April, GOES-16 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (below) showed the smoke plumes and hot pixels of the northwestern Oklahoma fires. The surface cold front moved over these fires around 18 UTC, with smoke transport transitioning more toward the east then southeast.

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and Shortwave Infrared (3.9 µm, bottom) images, with hourly plots of surface reports [click to play MP4 animation]

Farther to the southwest, new grass fires which began burning west of the Texas/Oklahoma border after 17 UTC quickly raced eastward and crossed the border into southwestern Oklahoma after 20 UTC (below).

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and Shortwave Infrared (3.9 µm, bottom) images, with hourly plots of surface reports [click to play MP4 animation]

===== 14 April Update =====

Three nighttime comparisons of (Preliminary, non-operational) NOAA-20 and Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm) images — each image pair separated by 50 minutes — (below; courtesy of William Straka, CIMSS) showed the bright glow and thermal hot spots of the ongoing Rhea fire complex.

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm) images at 0737 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm) images at 0737 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm) images [click to enlarge]

===== 15 April Update =====

250-meter resolution Terra MODIS true-color and false-color Red-Green-Blue (RGB) images from MODIS Today (below) showed the burn scars from the 34 Complex and the larger Rhea Fire at 1719 UTC on 15 April 2018.

Terra MODIS true-color and false-color RGB images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

Super Typhoon Jelawat

March 30th, 2018 |

Himawari-8 “Red” Visible (0.64 µm) Imagery, hourly from 2200 UTC 29 March through 0800 UTC 30 March (Click to animate)

Super Typhoon Jelawat has developed in the central Pacific Ocean, to the west of Guam and the Marianas Islands. The hourly imagery, above, from Himawari-8, from 2200 UTC on 29 March through 0800 UTC on 30 March show a rapid eye development. Satellite presentation seems best at around 0500 UTC, with a well-defined eye. Subsequently, high clouds covered the eye as it became less symmetric.

Himarwari-8 AHI Band 13 (“Clean Window”, 10.41 µm) Infrared Imagery, 2300 UTC on 29 March 2018 through 0140 UTC on 30 March 2018 (Click to enlarge)

Infrared Imagery (10.41 µm) imagery, above, shows a well-defined eye shortly after 0000 UTC. Following a data outage, imagery from 1400 UTC to 1600 UTC, below, shows a central region of cold convective clouds, but no obvious eye.

Himarwari-8 AHI Band 13 (“Clean Window”, 10.41 µm) Infrared Imagery, 1420 UTC on 30 March 2018 through 1600 UTC on 30 March 2018 (Click to enlarge)

Water Vapor Infrared Imagery from Himawari, below, shows that outflow from Jelawat is well-established to the north; outflow appears to be entrained into the mid-latitude westerlies. MIMIC Total Precipitable Water for the 24 hours ending 1600 UTC on 30 March (shown underneath the water vapor infrared imagery below) also shows the entrainment of tropical moisture around Jelawat into mid-latitudes.  The Total Precipitable Water shows a band of rich moisture extending to the east-southeast of Jelawat, portending a wet period for the Marianas Islands.

Himawari-8 AHI Water Vapor Imagery, Bands 8 (6.24 µm) and 10 (7.35 µm) at 1600 UTC on 30 March 2018 (Click to enlarge)

Morphed Microwave Observations of Total Precipitable Water, 1700 UTC on 29 March 2018 to 1600 UTC on 30 March 2018 (Click to enlarge)

Morphed Storm-centered Microwave Imagery for the 24 hours ending at 0900 UTC on 30 March, 2018 (from this site), show the rapid intensification after 0000 UTC on 30 March.  (Update:  a similar animation that ends at 1900 UTC on 30 March 2018 demonstrates a rapid collapse of the eyewall convection!)

Morphed Microwave Imagery for the 24 hours ending at ~0900 UTC on 30 March 2018 (Click to enlarge)

Full-resolution Visible Imagery from AHI (Band 3, 0.64) is shown below. (Faster and slower animations are available). A rapid organization and clearing of the eye is apparent around 0400 UTC with an equally-rapid apparent subsequent obscuration.

Full-Resolution Himawari-8 “Red” Visible (0.64 µm) Imagery, hourly from 0000 UTC 30 March through 0850 UTC 30 March (Click to animate)

GCOM overflew the storm at around 1610 UTC on 30 March, and the toggle below shows the 36.5 and 89.0 Ghz imagery over the storm (the same enhancement is used in each image).  The 36.5 Ghz imagery suggests a very asymmetric storm.  Eyewall convection in the 89 Ghz imagery is not robust. (These data were downloaded at the Direct Broadcast antenna on Guam and are courtesy Kathy Strabala, SSEC/CIMSS)

GCOM AMSR-2 36.5 and 89.0 GHz imagery over Jelawat, 1604 UTC on 30 March 2018 (Click to enlarge)

NOAA-20 and Suomi NPP also both overflew Jelawat around 1600 UTC on 30 March. The toggles below show NOAA-20 and then Suomi NPP Day Night Band visible imagery. and Infrared 11.45 Imagery, at 1549 and 1639 UTC. (Imagery courtesy William Straka, SSEC/CIMSS)  In contrast to the Visible and Infrared imagery from Himawari earlier in the day (at top), an eye is not present.  (Note that NOAA-20 data are provisional, non-operational, and undergoing testing still.)

VIIRS Infrared Imagery (11.45 µm) from NOAA-20 (1549 UTC) and Suomi NPP (1639 UTC) on 30 March 2018 (Click to enlarge)

VIIRS Day Night Band Visible Imagery (0.70 µm) from NOAA-20 (1549 UTC) and Suomi NPP (1639 UTC) on 30 March 2018 (Click to enlarge)

Suomi NPP also overflew the storm on 29 March 2018, at 0421 UTC. This was before Jelawat’s rapid intensification. The toggle below again uses data from the Direct Broadcast antenna on Guam and shows VIIRS visible (0.64 µm) and infrared (11.45 µm) imagery, MIRS products (Total Precipitable Water and Rain Rate) derived from data from the ATMS microwave sounder on Suomi NPP, and individual microwave channels from ATMS: 31, 88, 165 and 183 Ghz.

Suomi NPP VIIRS Visible (0.64 µm) and Infrared (11.45 µm) Imagery, MIRS Total Precipitable Water and Rain Rate, and individual Suomi NPP ATMS Channels: 31, 88, 165 and 183 GHz, all at 0421 UTC on 29 March 2018 (Click to enlarge)

Interests in the Marianas Islands should closely monitor the progress and evolution of this storm. This site and this site both have information on the system.