Severe thunderstorms in Wisconsin

August 28th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play MP4 animation]

Thunderstorms produced a variety of severe weather (SPC storm reports) as they moved eastward across the Upper Midwest on 28 August 2018. 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) and “Clean” Infrared Window (10.3 µm) images (below) showed the development and progression of the severe convection across central Wisconsin.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

Toggles beween Visible and Infrared images from Terra MODIS (1715 UTC), Aqua MODIS (1855 UTC) and Suomi NPP VIIRS (1945 UTC) are shown below.

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images, with plots of SPC storm reports [click to enlarge]

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images, with plots of SPC storm reports [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images, with plots of SPC storm reports [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images, with plots of SPC storm reports [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with plots of SPC storm reports [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with plots of SPC storm reports [click to enlarge]

These storms also brought heavy rain, which resulted in flooding that closed Interstate 90/94 near Mauston (about halfway between Madison and Fort McCoy) — that area received about 10 inches of rainfall in a 48-hour period (below). Amtrack trains were also forced to stop overnight near that same area, due to flooded tracks.

24-hour precipitation ending at 12 UTC on 28 August and 29 August [click to enlarge]

24-hour precipitation ending at 12 UTC on 28 August and 29 August [click to enlarge]

Hurricane Lane

August 22nd, 2018 |

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (above; courtesy of William Straka, CIMSS) showed the eye of Hurricane Lane in the central Pacific Ocean at 1208 UTC on 22 August 2018, a few hours after it reached Category 5 intensity (SATCON). Surface mesovortices were evident within the eye, and storm-top gravity waves were seen propagating west-southwestward away from the eyewall.

 

GOES-15 (GOES-West) Infrared Window (10.7 µm) images (below) revealed a significant amount of trochoidal motion as Lane moved northwestward during the 21 August – 22 August period. The storm weakened somewhat to Category 4 intensity as of 15 UTC on 22 August.

GOES-15 Infrared Window (10.7 µm) images [click to play animation | MP4]

GOES-15 Infrared Window (10.7 µm) images [click to play animation | MP4]

Hurricane Lane was near the limb of the Full Disk view of both Himawari-8 and GOES-17, as seen in a comparison of “Red” Visible (0.64 µm) images from the two satellittes (below).

* GOES-17 images shown here are preliminary and non-operational *

“Red” Visible (0.64 µm) images from Himawari-8 (left) and GOES-17 (right) [click to play animation | MP4]

DMSP-16/17 SSMIS Microwave (85 GHz) images from the CIMSS Tropical Cyclones site are shown  below.

DMSP-16 SSMIS Microwave (85 GHz) image at 1411 UTC [click to enlarge]

DMSP-16 SSMIS Microwave (85 GHz) image at 1411 UTC [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) image at 1717 UTC [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) image at 1717 UTC [click to enlarge]

Since forming as Tropical Depression 14E on 14 August. Lane had been moving westward over water having only modest Ocean Heat Content but Sea Surface Temperature values of 27-28ºC (below).

Track of Hurricane Lane, with maps of Ocean Heat Content and Sea Surface Temperature [click to enlarge]

Track of Hurricane Lane, with maps of Ocean Heat Content and Sea Surface Temperature [click to enlarge]

===== 23 August Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1150 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1150 UTC [click to enlarge]

Hurricane Lane remained at Category 4 intensity during the early hours of 23 August — however, the satellite presentation began to deteriorate as the eye became cloud-filled as seen in toggles between VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images from NOAA-20 at 1150 UTC (above) and Suomi NPP at 1240 UTC (below). An interesting narrow “warm trench” signature became very pronounced within the northwestern quadrant of Lane on the later Suomi NPP Infrared image.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1240 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1240 UTC [click to enlarge]

GOES-15 Visible (0.63 µm, left) and Infrared Window (10.7 µm, right) images, with hourly plots of data from Buoy 51002 [click to play animation | MP4]

GOES-15 Visible (0.63 µm, left) and Infrared Window (10.7 µm, right) images, with hourly plots of data from Buoy 51002 [click to play animation | MP4]

GOES-15 Visible (0.63 µm) and Infrared Window (10.7 µm) images after sunrise (above) showed that the eye of Lane moved over Buoy 51002 — located about 200 miles southwest of the Big Island of Hawai’i — just after 19 UTC (below). The peak wind gust measured by the buoy was 93 knots or 107 mph ay 1830 UTC; the lowest wind and air pressure values were recorded while in the eye from 1930-2110 UTC.

Plot of wind speed/gust and air pressure data from Buoy 51002

Plot of wind speed/gust and air pressure data from Buoy 51002

At 1703 UTC Buoy 51002 was located just west of the eye, beneath strong convection of the eyewall as seen on a DMSP-17 SSMIS Microwave (85 GHz) image (below).

DMSP-17 SSMIS Microwave (85 GHz) image at 1703 UTC, with and without plots of buoy data [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) image at 1703 UTC, with and without plots of buoy data [click to enlarge]

A Suomi NPP VIIRS Day/Night Band (0.7 µm) image at 2334 UTC or 1:34 pm HST on 23 August is shown below.

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

===== 24 August Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

A Suomi NPP VIIRS Day/Night Band (0.7 µm) image (above) showed Category 3 Hurricane Lane at 1211 UTC or 2:11 am HST on 24 August. Thin tendrils of high-altitude transverse banding can be seen along the western and northern periphery of the storm.

GOES-15 Infrared Window (10.7 µm) images (below) showed the development of the transverse banding as Lane eventually weakened to a Category 1 storm during the course of the day; a rapid warming of the cloud-top infrared brightness temperatures began around 2100 UTC. Even though the Ocean Heat Content and Sea Surface Temperature in the waters immediately west of Hawai’i were still fairly high, the hurricane was moving into an environment of increasingly unfavorable deep-layer wind shear which acted to decouple the low-level and mid-level circulations and hasten the weakening process.

GOES-15 Infrared Window (10.7 µm) images [click to play animation | MP4]

GOES-15 Infrared Window (10.7 µm) images [click to play animation | MP4]

GOES-15 Visible (0.63 µm) images (below) provided a slightly closer look at the storm during the daylight hours.

GOES-15 Visible (0.63 µm) images [click to play animation | MP4]

GOES-15 Visible (0.63 µm) images [click to play animation | MP4]

A dramatic difference was seen between Suomi NPP VIIRS Day/Night Band images at 1211 UTC and 2315 UTC (below), as Lane weakened from a Category 3 to a Category 1 hurricane in this 11-hour period.In spite of the rapid weakening, very heavy rainfall continued across much of the State, with 24-hour amounts exceeding 20 inches at some locations on the Big Island of Hawai’i. Note that the Low-Level Circulation Center (LLCC) of Lane had become exposed on the later 2315 UTC image (in spite of a thin veil of cirrus overhead), and was located to the southwest of the rapidly-dissipating convection that was closer to the islands.

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

===== 25 August Update =====

On the islands, the highest wind gust associated with Lane was 74 mph — and storm total rainfall amounts greater than 50 inches were recorded, with Hilo setting a record 3-day accumulation of 31.85 inches and a record 4-day accumulation of 36.76 inches. Rainfall rates on the Big Island exceeded 19 inches in 24 hours on 23 July.

Time series of surface reports from Hilo, Hawai'i [click to enlarge]

Time series of surface reports from Hilo, Hawai’i [click to enlarge]

Hourly images of the MIMIC Total Precipitable Water (TPW) product during the period 22-25 August (below) showed the circulation of Lane transporting high amounts of moisture across the Hawaiian Islands. TPW values of 60 mm (2.4 inches) or more were also seen in rawinsonde data from Hilo on many of these days.

MIMIC Total Precipitable Water product during 22-25 August [click to play animation | MP4]

MIMIC Total Precipitable Water product during 22-25 August [click to play animation | MP4]

A toggle between Suomi NPP VIIRS Day/Night Band images from 24 August / 2315 UTC and 25 August / 1152 UTC (below) showed a slow north/northwestward motion of the exposed LLCC of what had further weakened to Tropical Storm Lane.

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

Wildfires in British Columbia

August 17th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

A 2-panel comparison of GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above) showed the smoke plumes and thermal anomalies or “hot spots” (darker black to red pixels) associated with a flare-up of wildfires in western British Columbia on 17 August 2018.

A sequence of Shortwave Infrared (3.7 µm) images from Terra / Aqua MODIS and Suomi NPP / NOAA-20 VIIRS (below) revealed the diurnal changes in areal coverage and intensity of the thermal signature of the fires.

Shortwave Infrared (3.7 µm) images from Terra / Aqua MODIS and Suomi NPP / NOAA-20 VIIRS [click to enlarge]

Shortwave Infrared (3.7 µm) images from Terra / Aqua MODIS and Suomi NPP / NOAA-20 VIIRS [click to enlarge]

Toggles between Visible and Shortwave Infrared images from Terra MODIS (1912 UTC), NOAA-20 VIIRS (1950 UTC) ans Suomi NPP VIIRS (2129 UTC) are shown below (note: the NOAA-20 images are incorrectly labeled as Suomi NPP). It is interesting to note the impact that the smoke plume had on the air temperature at Quesnel (CYQZ) — because the smoke layer was optically dense enough (VIIRS True Color image) to significantly reduce incoming solar radiation, the temperature was as much as 14-18ºF (8-10ºC) cooler than Prince George (CYXS) to the north and Williams Lake (CYWL) to the south.

Terra MODIS Visible (0.65 µm) and Shortwave Infrared (3.7 µm) images [click to enlarge]

Terra MODIS Visible (0.65 µm) and Shortwave Infrared (3.7 µm) images at 1912 UTC [click to enlarge]

NOAA-20 VIIRS Visible (0.64 µm) and Shortwave Infrared (3.74 µm) images [click to enlarge]

NOAA-20 VIIRS Visible (0.64 µm) and Shortwave Infrared (3.74 µm) images at 1950 UTC [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Shortwave Infrared (3.74 µm) images at 2129 UTC [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Shortwave Infrared (3.74 µm) images at 2129 UTC [click to enlarge]

Farther to the east in Alberta, thick smoke caused very poor air quality in cities like Edmonton and Grande Prairie (photo 1 | photo 2). Daily composites of Suomi NPP VIIRS True Color RGB images from 11 August to 17 August (below) revealed the transport of smoke across British Columbia, Alberta and Saskatchewan.

Daily composites of Suomi NPP VIIRS True Color RGB images (with VIIRS fire detections in red), 11-17 August [click to play MP4 | Animated GIF]

Daily composites of Suomi NPP VIIRS True Color RGB images (with VIIRS fire detections in red), 11-17 August [click to play MP4 | Animated GIF]

A time series of surface reports from Edmonton, Alberta covering the period 14-17 August (below) showed that smoke restricted the surface visibility there to 1.5 miles on 15 August and 17 August.

Time series of surface reports from Edmonton, Alberta during the period 14-17 August [click to enlarge]

Time series of surface reports from Edmonton, Alberta during the period 14-17 August [click to enlarge]

===== 19 August Update =====

* GOES-17 images shown here are preliminary and non-operational *

GOES-17 Near-Infrared

GOES-17 Near-Infrared “Cloud Particle Size” (2.24 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play 81 Mbyte MP4 animation]

A 2-panel comparison of GOES-17 Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images during the 7-day period of 13-19 August (above) showed the diurnal changes in thermal signatures of the ongoing British Columbia wildfires. The nighttime thermal signatures seen on the 2.24 µm images (brighter white pixels) result from the fact that this spectral band is located close to the peak emitted radiance of very hot features such as active volcanoes or large fires (below).

Plots of Spectral Response Functions for ABI Bands 5, 6 and 7 [click to enlarge]

Plots of Spectral Response Functions for ABI Bands 5, 6 and 7 [click to enlarge]

Hurricane Hector

August 6th, 2018 |
NOAA-20 and Suomi NPP VIIRS Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 and Suomi NPP VIIRS Infrared Window (11.45 µm) images [click to enlarge]

* GOES-17 images shown here are preliminary and non-operational *

A toggle between NOAA-20 and Suomi NPP VIIRS Infrared Window (11.45 µm) images (above; courtesy of William Straka, CIMSS) showed the well-defined eye of Hurricane Hector after it had reached Category 4 intensity on 06 August 2018 (advisories: EPAC | CPAC).

GOES-17 “Red” Visible (0.64 µm) images (below) revealed cloud-top gravity waves within the eyewall region of the storm, along with thin filaments of transverse banding in the northern semicircle farther from the eye.

GOES-17

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-15 (GOES-West) Visible (0.63 µm) and Infrared Window (10.7 µm) images (below) showed that eyewall cloud-top infrared brightness temperatures were in the -70 to -80ºC range (black to white enhancement).

GOES-15 Visible (0.63 µm, left) and Infrared Window (10.7 µm, right) images [click to play animation | MP4]

GOES-15 Visible (0.63 µm, left) and Infrared Window (10.7 µm, right) images [click to play animation | MP4]

A magnified view of GOES-15 Visible images (below) revealed mesovortices within the eye of Hector.

GOES-15 Visible (0.63 µm) images [click to play animation | MP4]

GOES-15 Visible (0.63 µm) images [click to play animation | MP4]

Metop ASCAT surface scatterometer winds (below) surrounding the eye were near 70 knots around 1930 UTC.

GOES-15 Infrared Window (10.7 µm) image and Metop ASCAT surface scatterometer winds [click to enlarge]

GOES-15 Infrared Window (10.7 µm) image and Metop ASCAT surface scatterometer winds [click to enlarge]

The MIMIC-TC morphed microwave product (below) showed that Hector underwent an eyewall replacement cycle early in the day on 05 August, and then maintained a well-defined eye as it subsequently strengthened to a high-end Category 4 intensity on 06 August (ADT | SATCON).

MIMIC-TC morphed microwave product [click to play animation]

MIMIC-TC morphed microwave product [click to play animation]

===== 07 August Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A nighttime NOAA-20 VIIRS Day/Night Band (0.7 µm) image (above) revealed the presence of mesospheric airglow waves (reference) propagating northwestward away from Category 4 Hurricane Hector on 07 August. Note that these high-altitude waves were not apparent on the corresponding Infrared Window (11.45 µm) image.