Hurricane Dorian

August 28th, 2019 |

NOAA-20 Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images, courtesy of William Straka (CIMSS) [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images, courtesy of William Straka (CIMSS) [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (above) showed cold overshooting tops (darker black infrared enhancement) over the Leeward Islands as well as subtle mesospheric airglow waves propagating southward away from the center of Tropical Storm Dorian at 0606 UTC on 28 August 2019.

In a toggle between GOES-16 (GOES-East) “Clean” Infrared Window (10.35 µm) and DMSP-18 SSMIS Microwave (85 GHz) images from the CIMSS Tropical Cyclones site (below), the Microwave image revealed a convective band that was wrapping around the northern portion of the center of Dorian at 0930 UTC.

GOES-16 "Clean" Infrared Window <em>(10.35 µm)</em> and DMSP-18 SSMIS Microwave <em>(85 GHz)</em> images [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) and DMSP-18 SSMIS Microwave (85 GHz) images [click to enlarge]

1-minute Mesoscale Domain Sector GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (below) also showed a convective burst wrapping around the eastern and northern edges of the center of Dorian after 15 UTC. The coldest cloud-top infrared brightness temperature associated with that early convective burst was -83ºC.

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Dorian was upgraded to a Category 1 Hurricane at 18 UTC. Prior to that time, the tropical cyclone had been moving through an environment of low deep-layer wind shear (below), one factor that is favorable for intensification. Dorian was also passing over water possessing warm sea surface temperatures and modest ocean heat content.

http://cimss.ssec.wisc.edu/goes/blog/wp-content/uploads/2019/08/.gifGOES-16 Infrared Window (10.35 µm) images, with contours of deep-layer wind shear at 19 UTC [click to enlarge]

GOES-16 Infrared Window (10.35 µm) images, with contours of deep-layer wind shear at 19 UTC [click to enlarge]

VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP as viewed using RealEarth are shown below, from around the time when Dorian was upgraded from a Tropical Storm to a Hurricane.

VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

A comparison of GOES-16 Infrared (at 2330 UTC) and GMI Microwave (at 2341 UTC) images (below) revealed Dorian’s small eye.

GOES-16 Infrared (10.35 µm) and GMI Microwave (85 GHz) images [click to enlarge]

GOES-16 Infrared (10.35 µm) and GMI Microwave (85 GHz) images [click to enlarge]

===== 29 August Update =====

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

On 29 August, 1-minute GOES-16 Visible and Infrared images (above) showed that periodic convective bursts persisted around the center of Category 1 Hurricane Dorian.

During one of those convective bursts from 1800-1900 UTC, an increase in GOES-16 GLM Flash Extent Density was evident (below).

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 Visible and Infrared images at 1852 UTC with and without an overlay of GLM Flash Extent Density are shown below. At that particular time, the overshooting top infrared brightness temperature reached a minimum value of -82.5C.

GOES-16 “Red” Visible (0.64 µm) image at 1853 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Red” Visible (0.64 µm) image at 1852 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) image at 1853 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) image at 1852 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

===== 30 August Update =====

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

The eye of Dorian became more well-defined in 1-minute GOES-16 Visible and Infrared images (above) during the morning hours on 30 August.

A DMSP-17 Microwave (85 GHz) Microwave image at 1141 UTC (below) did not yet show a completely closed eyewall structure at that earlier time.

DMSP-17 SSMIS Microwave (85 GHz) Microwave image [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) Microwave image [click to enlarge]

Dorian was upgraded to a Category 3 hurricane at 18 UTC — the storm was moving into a narrow corridor of weaker deep-layer wind shear around that time. During the 3 hours leading up to 18 UTC, animations of 1-minute GOES-16 Visible and Infrared imagery — with and without an overlay of GLM Flash Extent Density — are shown below.

GOES-16 “Red” Visible (0.64 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

===== 31 August Update =====

30-second GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

30-second GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

Overlapping 1-minute GOES-16 Mesoscale Domain Sectors provided imagery at 30-second intervals — Visible and Infrared animations of the Category 4 hurricane from 1430-1900 UTC are shown above and below, respectively. A longer Visible animation from 1100-2259 UTC is available here (courtesy of Pete Pokrandt, AOS).

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

30-second GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

VIIRS imagery and NUCAPS profiles near the North Pole

August 22nd, 2019 |

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A sequence of 4 consecutive Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.4 µm) images (above) showed a small swirl of clouds associated with a weak area of low pressure near the North Pole — north of Greenland (surface analyses) — on 22 August 2019.

Suomi NPP VIIRS Visible (0.64 µm) images, with plots of NUCAPS availability [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) images, with plots of NUCAPS availability [click to enlarge]

There were Suomi NPP NUCAPS soundings available in the vicinity of the surface low (above) — profiles from the 4 squared green dot locations (green dots indicate successful sounding retrievals from both the CrIS and ATMS instruments) which were closest to both the surface low and the North Pole (below) revealed characteristically-low arctic tropopause heights of around 7-8 km, and surface temperatures dropping to below freezing at the 2 most northerly points of 88.28º and 88.57º N latitude. Note: the Suomi NPP (SNPP) CrIS anomaly that began on 24 March 2019 was resolved via a switch to the redundant Side-2 electronics on 24 June — so CrIS data once again became available for incorporation into SNPP NUCAPS soundings beginning on 01 August. Training material for NUCAPS in AWIPS is available here.

NUCAPS temperature (red) and dew point (green) profiles [click to enlarge]

NUCAPS temperature (red) and dew point (green) profiles [click to enlarge]

According to GCOM-W1 AMSR2 data (source), this weak surface low was over a portion of the Arctic Ocean where sea ice concentration was still high (below).

GCOM-W1 AMSR2 sea ice concentration [click to enlarge]

GCOM-W1 AMSR2 sea ice concentration [click to enlarge]

Pyrocumulonimbus cloud in Bolivia

August 18th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, middle) and “Clean” Infrared Window (10.35 µm, bottom) images [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.35 µm) images (above) showed the formation of a pyrocumulonimbus (pyroCb) cloud over far southeastern Bolivia on 18 August 2019. The small anvil cloud briefly surpassed the -40ºC pyroCb threshold from 1800-1820 UTC, attaining a minimum cloud-top infrared brightness temperature of -45.2ºC along the Bolivia/Paraguay border at 1800 UTC. This pyroCb formed over the hottest southern portion of an elongated fire line, as seen in the Shortwave Infrared imagery.

A 1.5-day animation of GOES-16 Shortwave Infrared images (from 12 UTC on 17 August to 2350 UTC on 18 August) revealed the rapid southeastward run of the fire to the Bolivia/Paraguay border on 17 August, followed by the eastward expansion of the fire line on 18 August (below).

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

A toggle between Suomi NPP VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images as viewed using RealEarth (below) showed the large and dense smoke plume streaming southeastward, with the small pyroCb along the Bolivia/Paraguay border at 1745 UTC — the brighter white tops of the pyrocumulus and pyrocumulonimbus clouds reached higher altitudes than the tan-colored smoke plume. The coldest cloud-top infrared brightness temperature was about -55ºC (orange enhancement), which corresponded to an altitude around 9 km according to rawinsonde data from Corumbá, Bolivia.

Suomi NPP VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images [click to enlarge]

 

Strong northerly to northwesterly surface winds were blowing across the region, in advance of an approaching cold front (surface analyses) — at Robore, Bolivia (located just north-northwest of the fires), winds were gusting to 25-28 knots during much of the day (below).

Time series of surface report data from Robore, Bolivia [click to enlarge]

Time series of surface report data from Robore, Bolivia [click to enlarge]

This is likely the second confirmed case of a South American pyroCb (the first being on 29 January 2018) — in addition, it’s the second pyroCb documented in the tropics and the first pyroCb documented during a winter season. Thanks to Mike Fromm (NRL) for bringing this case to our attention!

===== 25 August Update =====

GOES-16 “Red” Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, middle) and “Clean” Infrared Window (10.35 µm, bottom) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, middle) and “Clean” Infrared Window (10.35 µm, bottom) images [click to play animation | MP4]

GOES-16 Visible, Shortwave Infrared and “Clean” Infrared Window images (above) showed that another pyroCb developed from that same general fire complex, southwest of Robore, Bolivia (SLRB), on 25 August.

A toggle between Suomi NPP and NOAA-20 VIIRS True Color RGB and Infrared Window images as viewed using RealEarth (below) showed the large and dense smoke plume streaming southeastward, with the small pyroCb just north of the Bolivia/Paraguay border — the brighter white tops of the pyrocumulus and pyrocumulonimbus clouds reached higher altitudes than the tan-colored smoke-rich clouds at lower altitudes.

Suomi NPP and NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP and NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

Largest hailstone on record for the state of Colorado

August 13th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.35 µm, right) images, with plots of SPC Storm Reports [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) displayed the increasing coverage of thunderstorms along the Colorado/Kansas border on 13 August 2019, These thunderstorms produced a few tornadoes and large hail — including hail of 5.00 inches in diameter at 2135 UTC near Bethune in extreme eastern Colorado (SPC storm reports).

 

A toggle between NOAA-20 VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images (below) showed the storms at 2022 UTC — just over an hour before the 5.00-inch hail report at 2135 UTC. Note that the NOAA-20 images are incorrectly labelled as Suomi NPP.

NOAA-20 Visible (0.64 µm) and Infrared Window (11.45 µm) images, with NUCAPS sounding locations and surface reports [click to enlarge]

NOAA-20 VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with NUCAPS sounding locations and surface reports [click to enlarge]

The NOAA-20 NUCAPS profile for the green dot in far western Kansas (below) showed that the airmass in advance of the approaching thunderstorms was very unstable, with a Most Unstable parcel Convective Available Potential Energy (MU CAPE) value of 2737 J/kg and a Lifted Index (LI) value of -10ºC (with no Convective Inhibition CINH).

NOAA-20 NUCAPS profile in far western Kansas [click to enlarge

NOAA-20 NUCAPS profile in far western Kansas [click to enlarge]

In contrast, the NUCAPS profile for the green dot in eastern Colorado (below) revealed an airmass that was less unstable in the wake of the departing thunderstorms.

NOAA-20 NUCAPS profile in eastern Colorado [click to enlarge]

NOAA-20 NUCAPS profile in eastern Colorado [click to enlarge]

===== 14 August Update =====

NWS Goodland Public Information Statement.