Why 1-minute data matters: Orphan Anvils

June 4th, 2015 |
GOES-14 Visible (0.6263 µm) Imagery, 11 May 2014.  An orphan anvil is indicated (click to play animation)

GOES-14 Visible (0.6263 µm) Imagery, 11 May 2014. An orphan anvil is indicated (click to play animation)

‘Orphan anvils’ typically will develop before and just as a cap that prevents convective development breaks down. They can therefore be a precursor to strong thunderstorm development. The animation above shows an orphan anvil just before strong convection (Storm Reports) develops over south-central Nebraska. The anvil development is obvious in the 1-minute animation, above. (Click here for an un-annotated, smooth animation). This anvil was mentioned in the SPC Day-1 Convective Outlook updated at 2000 UTC (the 1-minute imagery is called 1km in that outlook).

The animation below compares 1-minute (top), 5-minute (middle) and present 15-minute GOES (bottom) time-steps over northwest Kansas on June 4 2015. It is a straightforward matter to notice the orphan anvils in the 1-minute imagery; it is far more challenging when using the 5-minute time-step and it’s nearly impossible with present-day 15-minute GOES time-steps. In this case, the cap was not broken. (Hat tips to Bill Line, SPC and Chad Gravelle, OPG, for these cases; Click here for additional comments and here for additional information on SRSO-R Operations).

GOES-14 Visible (0.6263 µm) Imagery, 4 June 2015, with 1-minute time-steps (top), 5-minute time-steps (middle) and routine 15-minute GOES time-steps (bottom) (click to play animation)

GOES-14 Visible (0.6263 µm) Imagery, 4 June 2015, with 1-minute time-steps (top), 5-minute time-steps (middle) and routine 15-minute GOES time-steps (bottom) (click to play animation)

Mesoscale Convective Vortex (MCV) in southern California

July 20th, 2013 |
Suomi NPP VIIRS 0,7 µm Day/Night Band and 11.45 µm IR channel images

Suomi NPP VIIRS 0,7 µm Day/Night Band and 11.45 µm IR channel images

A comparison of AWIPS images of Suomi NPP VIIRS 0.7 µm Day/Night Band and 11.45 µm IR channel data (above) showed a large mesoscale convective system in southwestern Arizona at 08:40 UTC or 2:40 am local time on 20 July 2013. With ample illumination from the Moon (which was in the Waxing Gibbous phase, at 96% of full), the “visible image at night” capability of the VIIRS Day/Night Band image allowed shadowing from overshooting thunderstorm tops to be clearly seen; the coldest cloud-top IR brightness temperature of the overshooting tops was -83º C (violet color enhancement). In addition, numerous cloud-to-ground lightning strikes were associated with the MCS at that time. A few hours earlier, this storm had produced reports of wind damage in the Phoenix area just after 05 UTC (SPC Storm Reports).

With the arrival of daylight, McIDAS images of GOES-15 (GOES-West) 0.63 µm visible channel data (below; click image to play animation) revealed the emergence of a well-defined and relatively compact Mesoscale Convective Vortex (MCV) that continued to move westward across southern California during the day. The MCV also played a role in helping to iniitate additional convection in areas such as the San Bernadino Mountains of southern California.

GOES-15 0.63 µm visible channel images (click image to play animation)

GOES-15 0.63 µm visible channel images (click image to play animation)

A comparison of Suomi NPP VIIRS 0.64 µm visible channel and 11.45 µm IR channel images at 20:05 UTC (below) showed that the clouds associated with the MCV were primarily low to mid-level clouds, which exhibited IR brightness temperatures that were generally warmer than -20º C.

Suomi NPP VIIRS 0.64 µm visible channel and 11.45 µm IR channel images

Suomi NPP VIIRS 0.64 µm visible channel and 11.45 µm IR channel images

For aditional information on MCVs, see the VISIT lesson “Mesoscale Convective Vortices“. For additional information on VIIRS imagery, see the VISIT lesson “VIIRS Satellite Imagery in AWIPS“.

GOES-15 replaces GOES-11 as the operational GOES-West satellite

December 6th, 2011 |

At 15:46 UTC on 06 December 2011, GOES-15 replaced GOES-11 as the operational GOES-West satellite. GOES-11 (launched in 2000, and operational since 2006) was one of the older GOES-I/J/K/L/M series of satellites (GOES-8/9/10/11/12), while GOES-15 (launched in 2010; Post Launch Test) is one of the newer GOES-N/O/P series of satellites (GOES-13/14/15) — so there are some important differences that users of the new GOES-15 imagery should be aware of:

  1. Improved water vapor channel (Imager channel 3)
  2. Slightly different visible channel (Imager chanel 1)
  3. 13.3 µm IR (Imager channel 6) replaces the 12.0 µm  IR (Imager channel 5)
  4. Improved Image Navigation and Registration (INR)
  5. Shorter image outages during Spring and Fall season “eclipse periods”
  6. Less noise on many of the Sounder channels
GOES-11 vs GOES-15 Imager water vapor channel data as the source for GOES-West

GOES-11 vs GOES-15 Imager water vapor channel data as the source for GOES-West

The improvement made to the GOES-15 Imager instrument water vapor channel is likely the most important change that operational users will notice. In the sequence of AWIPS images above, the first 3 images are using the 8-km resolution GOES-11 6.7 µm channel as the source for GOES-West water vapor imagery, while the final 3 images use the 4-km resolution GOES-15 6.5 µm channel. Note the change to slightly warmer/drier water vapor brightness temperatures (brighter yellow color enhancement) after the changeover to GOES-15 — this in part due to the fact that the spectral response function of the 4-km resolution water vapor channel on GOES-12 and beyond is much wider than that of the 8-km resolution water vapor channel on GOES-8 through GOES-11. In addition, notice that the north-south “seam” joining the GOES-West and GOES-East water vapor channel images disappears, since the characteristics of the water vapor channels are now identical on those two satellites.

In the sequence of AWIPS images below, the first 2 images are using the GOES-11 Sounder instrument 6.5 µm channel as the source for GOES-West water vapor imagery, while the final 2 images use the GOES-15 Sounder 6.5 µm channel. Note the improvement in noise seen in the Sounder instrument water vapor images after the changeover to GOES-15. Since the 3 GOES Sounder water vapor channels are a component of the GOES Sounder Total Precipitable Water derived product imagery, the quality of that product should also improve.

GOES-11 vs GOES-15 Sounder 6.5 µm water vapor channel data as the source for GOES-West

GOES-11 vs GOES-15 Sounder 6.5 µm water vapor channel data as the source for GOES-West

In terms of the visible imagery, a comparison using GOES-11 (the first 3 images) vs GOES-15 (the final set of 3 images) Imager visible channel data is seen below (during a test on 29 November). Immediately obvious is the fact that the GOES-15 visible channel imagery appears “brighter” than the GOES-11 visible channel imagery — this is due to the fact that the performance of the GOES visible detectors degrades over time. The 0.63 µm visible channel on GOES-15 is also slightly different than the 0.65 µm visible channel on GOES-11, as is discussed in the “GOES-13 is now the operational GOES-East satellite” blog post. GOES-15 is similar to GOES-13, since it is part of the GOES-N/O/P series of spacecraft.

Using GOES-11 vs GOES-15 as the source for GOES-West visible channel images

Using GOES-11 vs GOES-15 as the source for GOES-West visible channel images

One of the benefits of GOES-15 is improved Image Navigation and Registration (INR), which leads to less image-to-image “wobble” when viewing an animation. The improved GOES-15 INR is quite evident when compared to GOES-11 for this blowing dust case on 27 November (below; click image to play animation).

GOES-11 0.65 µm and GOES-15 0.63 µm visible images (click image to play animation)

GOES-11 0.65 µm and GOES-15 0.63 µm visible images (click image to play animation)

A comparison of the GOES-15 0.63 µm visible channel, the 10.7 µm “IR window” channel, and the 13.3 µm “CO2 absorption” IR channel (below) shows that high cloud features will show up with more clarity on the 13.3 µm images — by examining the weighting function of the 13.3 µm IR channel, it can be seen that this CO2 absorption channel samples radiation from a much deeper, much higher altitude than the standard 10.7 µm IR window channel.

GOES-15 0.63 µm visible channel, 10.7 µm IR channel, and 13.3 µm IR channel images

GOES-15 0.63 µm visible channel, 10.7 µm IR channel, and 13.3 µm IR channel images

The 13.3 µm “CO2 absorption” IR channel is also used for the creation of derived products such as Cloud Top Pressure. An example of a combined GOES-15 (GOES-West) + GOES-13 (GOES-East) Cloud Top Pressure product is shown below (courtesy of Tony Schreiner, CIMSS).

GOES-15 + GOES-13 Cloud Top Pressure product

GOES-15 + GOES-13 Cloud Top Pressure product

An example of the value of having larger batteries onboard the GOES-13/14/15 spacecraft during eclipse periods can be seen below, as Hurricane Ike was making landfall along the Texas coast in September of 2008. During the approximately 3 hour image outage from GOES-12 during the eclipse period (when the satellite was in the Earth’s shadow, and the solar panels could not generate the power necessary to operate the GOES imager and GOES sounder instrument packages), GOES-13 IR images continued to be available — and these GOES-13 images showed a strong spiral band that was in the process of intensifying and moving inland along the far northeastern Texas and far southwestern Louisiana coastlines.

GOES-12 vs GOES-13 IR images (Hurricane Ike making landfall)

GOES-12 vs GOES-13 IR images (Hurricane Ike making landfall)

Additional information can be found on the VISIT training lesson “GOES-15 Becomes GOES-West“.

HISTORICAL NOTE: GOES-15 became GOES-West on the 45th anniversary of the launch of ATS-1 on 06 December 1966. ATS-1 was the first meteorological satellite to provide geostationary images — an example of an early ATS-1 visible image is seen below, and QuickTime movies are available which show animations of some of the early ATS-1 images.

ATS-1 visible image (11 December 1966)

ATS-1 visible image (11 December 1966)

GOES-13 is now the operational GOES-East satellite

April 14th, 2010 |
GOES-12 0.65 µm vs GOES-13 0.63 µm visible images

GOES-12 0.65 µm vs GOES-13 0.63 µm visible images

As of 18:34 UTC on 14 April 2010, GOES-13 (launched May 2006, with a Post Launch Test in December 2006) replaced GOES-12 (launched July 2001) as the operational GOES-East satellite  — for more information, see the NOAA NESDIS Satellite Services Division. A sequence of AWIPS images (above) shows the last three GOES-12 visible images followed by the first three GOES-13 visible images centered over the Upper Midwest region of the US during the satellite transition period. Both the GOES-12 and the GOES-13 visible images are enhanced using the “Linear” AWIPS enhancement (see below for more details).

Note that areas of dense vegetation (for example, over river valleys, and also across much of southern Indiana) appear slightly darker on the GOES-13 visible channel images. This is due to the fact that the visible channel on the newer GOES series — GOES-13 and beyond — is a narrower channel (centered at 0.63 µm, vs 0.65 µm for the older GOES satellites) that misses the “brighter” portion of the grass/vegetation spectrum (green plot) that begins to increase rapidly at wavelengths higher than about 0.7 µm (below). You will also notice that the cloud features appear slightly brighter in the last three GOES-13 images — this is due to the fact that the GOES visible detector performance tends to degrade over time, so the visible images from the much  older GOES-12 satellite appear slightly “washed out” in comparison.

GOES-12 vs GOES-13 visible channel spectral response function plots

GOES-12 vs GOES-13 visible channel spectral response function plots

Note to AWIPS users: because of the different characteristics of the GOES-13 visible channel, it is suggested that you change the default GOES visible image enhancement from “ZA” to “Linear” — as seen in a GOES-13 visible image comparison with those 2 enhancements (below), the GOES-13 imagery can appear too dark with the default “ZA” enhancement.

GOES-13 visible image: "ZA" enhancement vs "Linear" enhancement

GOES-13 visible image: “ZA” enhancement vs “Linear” enhancement

======================================

GOES-12 vs GOES-13 Sounder 4.5 µm shortwave IR images

GOES-12 vs GOES-13 Sounder 4.5 µm shortwave IR images

There are also significant improvements in the quality of the GOES-13 Sounder data, due to the fact that GOES-12 had been experiencing filter wheel problems for quite some time. AWIPS comparisons of the last GOES-12 and the first GOES-13 Sounder 4.5 µm shortwave IR images (above) and 6.5 µm water vapor channel images (below) clearly demonstrate the dramatic reduction in noise — in these Sounder composite images, the western portion of the image is GOES-11 (GOES-West) data, while the eastern portion of the image is either GOES-12 or GOES-13 (GOES-East) data. In particular, the 6.5 µm water vapor image is “cleaner” on GOES-13 as a result of “colder” detectors on the newer spacecraft design, which more effectively radiate to space.

GOES-12 vs GOES-13 Sounder 6.5 µm water vapor channel images

GOES-12 vs GOES-13 Sounder 6.5 µm water vapor channel images