Hurricane Matthew makes landfall in western Haiti, then eastern Cuba

October 4th, 2016 |

GOES-13 Visible (0.63 µm) Imagery, 1045-1245 UTC on 4 October 2016 (Click to enlarge)

Hurricane Matthew has made landfall in western Haiti. The rocking animation (click here for a straight animation) above shows the cloud-filled eye of the storm crossing the Tiburon Peninsula. The storm’s center is forecast to remain largely over water as it moves through the Windward Passage between Cuba and Hispaniola.

A closer look using a 2-panel comparison of GOES-13 Visible (0.63  µm) and Infrared Window (10.7 µm) images, below, shows the deteriorating satellite presentation following interaction with the topography of the islands. The GOES-13 satellite was in Rapid Scan Operations (RSO) mode, providing images as frequently as every 5-7 minutes.

GOES-13 0.63 µm Visible (left) and 10.7 µm Infrared Window (right) images [Click to play animation]

GOES-13 0.63 µm Visible (left) and 10.7 µm Infrared Window (right) images [Click to play animation]

NOAA-18 overflew the region around 1130 UTC while the eye was on land, and the toggle below shows Visible (0.64 µm) and Infrared Window Channel (10.8 µm) imagery from 1130 UTC. The cloud-filled eye is distinct in the infrared image at that time, but a sequence of POES AVHRR Infrared (12.0 µm) images showed the rapid deterioration shortly after landfall (as was seen in the GOES-13 images above).

NOAA-18 AVHRR Visible (0.64 µm) and Infrared (10.8 µm) Imagery, 1130 UTC on 4 October 2016 (Click to enlarge)

A toggle between 1215 UTC GOES-13 Infrared Window (10.7 µm) and 1217 UTC DMSP-18 SSMIS Microwave (85 GHz) images from the CIMSS Tropical Cyclones site, below, revealed that a well-defined eye was still evident in the microwave data.

GOES-13 Infrared Window (10.7 µm) and DMSP-18 SSMIS Microwave (85 GHz) images [Click to enlarge]

GOES-13 Infrared Window (10.7 µm) and DMSP-18 SSMIS Microwave (85 GHz) images [Click to enlarge]

Aqua overflew Matthew shortly after 1800 UTC on 4 October, and the toggle below shows the 1-km visible (0.65 µm) and the 1-km ‘Cirrus Channel’ (1.38 µm). The Cirrus Channel detects radiation at a wavelength where very strong absorption by water vapor is occurring; only high clouds are detected with this channel, and the toggle between the Cirrus Channel and the Visible nicely outlines the cirrus canopy of the storm. The Advanced Baseline Imager (ABI) on GOES-R also includes a Cirrus Channel.

Aqua MODIS Visible (0.65 µm) and

Aqua MODIS Visible (0.65 µm) and “Cirrus Channel” (1.38 µm) at 1832 UTC on 4 October 2016 [Click to enlarge]

Meanwhile, to the northeast of Matthew, in the tropical Atlantic, Tropical Storm Nicole has formed. The animation of visible imagery from GOES-13, below, shows a sheared storm; the low-level circulation is west of the deepest convection. It’s unlikely that Nicole will intensify much under such sheared conditions. Cirrus outflow from Matthew is evident at the south and west of Nicole.

GOES-13 Visible (0.63 um) images [click to play animation]

GOES-13 Visible (0.63 um) images [click to play animation]

ASCAT on METOP-A sampled both storms in its morning overpass over the western Atlantic, as shown below. The maximum scatterometer-derived wind speeds were 60 knots with Matthew and 40 knots for Julia.

GOES-13 Visible (0.63 µm) image, with Metop-AASCAT winds [Click to enlarge]

GOES-13 Visible (0.63 µm) image, with Metop-AASCAT winds [Click to enlarge]

Late in the day on 04 October, Category 4 Hurricane Mathew made a second landfall along the far eastern tip of Cuba. As seen in the image toggle below, in spite of a ragged appearance on GOES-13  Infrared Window (10.7 µm) imagery, a distinct eye was still seen using DMSP-18 SSMIS Microwave (85 GHz) data.

GOES-13 Infrared Window (10.7 µm) and DMSP-18 SSMIS Microwave (85 GHz) images [Click to enlarge]

GOES-13 Infrared Window (10.7 µm) and DMSP-18 SSMIS Microwave (85 GHz) images [Click to enlarge]

Super Typhoon Meranti

September 12th, 2016 |

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play MP4 animation]

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play MP4 animation]

Rapid-scan (2.5-minute interval) Himawari-8 AHI Visible (0.64 µm) and Infrared Window (10.4 µm) images (above; also avialable as a 33 Mbyte animated GIF) showed the pin-hole eye and cold cloud-top IR brightness temperatures (-80º C and colder, violet color enhancement) associated with Super Typhoon Meranti (16W) in the Philippine Sea on 11-12 September 2016. Note that the ABI instrument on GOES-R will provide similar 0.5-km resolution Visible and 2-km resolution Infrared imagery.

Himawari-8 Infrared Window (10.4 µm) image at 1230 UTC on 12 September, with 11 September images of Sea Surface Temperature and Ocean Heat Content [click to enlarge]

Himawari-8 Infrared Window (10.4 µm) image at 1230 UTC on 12 September, with 11 September images of Sea Surface Temperature and Ocean Heat Content [click to enlarge]

As Meranti was intensifying from a Category 4 to a Category 5 storm, it was passing over waters that exhibited both warm Sea Surface Temperatures and high Ocean Heat Content as seen on images from the CIMSS Tropical Cyclones site (above), and was also moving through an environment of very low deep-layer wind shear (below) — all factors that are favorable for tropical cyclone intensification.

Himawari-8 Infrared Window (10.4 µm) images, with satellite-derived 850-200 hPa deep layer wind shear [click to play animation]

Himawari-8 Infrared Window (10.4 µm) images, with satellite-derived 850-200 hPa deep layer wind shear [click to play animation]

Himawari-8 Infrared Window (10.4 µm) images (below; also available as an 89 Mbyte animated GIF) showed Meranti as a Category 5 storm during the nighttime hours on 12 September.

Himawari-8 Infrared Window (10.4 µm) images [click to play MP4 animation]

Himawari-8 Infrared Window (10.4 µm) images [click to play MP4 animation]

A comparison of a Himawari-8 Infrared Window (10.4 µm) image at 1830 UTC and a DMSP-15 SSMIS Microwave (85 GHz) image at 1847 UTC (below) again displayed the very small eye.

Himawari-8 Infrared Window (10.4 µm) and DMSP-15 SSMIS Microwave (85 GHz) images [click to enlarge]

Himawari-8 Infrared Window (10.4 µm) and DMSP-15 SSMIS Microwave (85 GHz) images [click to enlarge]

During the subsequent daytime hours (local time) on 12 September, another comparison of rapid-scan (2.5-minute interval) Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (below; also available as a 24 Mbyte animated GIF) continued to show a well-defined eye as Meranti maintained Category 5 intensity (ADT plot). Mesovortices could be seen spinning within the eye on the visible imagery during this time.

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play MP4 animation]

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play MP4 animation]

===== 13 September Update =====

Himawari-8 Infrared Window (10.4 µm) images [click to play MP4 animation]

Himawari-8 Infrared Window (10.4 µm) images [click to play MP4 animation]

Super Typhoon Meranti went through a secondary round of intensification on 13 September (ADT plot) , with the JTWC estimating maximum sustained winds of 165 knots with gusts to 200 knots at 21 UTC. CIMSS Satellite Consensus (SATCON) plots of wind and pressure indicated that Meranti reached peak intensity near the middle of the day. Himawari-8 Infrared Window (10.4 µm) images (above; also available as a 114 Mbyte animated GIF) continued to display a well-defined eye with an annular storm structure during this period. A faster version of the animated GIF better showed the pronounced trochoidal motion exhibited by the eye of Meranti, as it moved just south of the island of Taiwan.

Himawari-8 Infrared Window (11.45 µm) images [click to enlarge]

Himawari-8 Infrared Window (11.45 µm) images [click to enlarge]

The eye of Meranti passed directly over the small Philippine island of Itbayat, as seen on Himawari-8 Infrared Window (11.45 µm) images viewed using RealEarth (above).

Suomi NPP overflew Meranti around 1730 UTC, just as the eye of the storm was passing over Itbayat. In a toggle between VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images (below; courtesy of William Straka, SSEC) ample lunar illumination provided a very good “visible image at night” which also included a bright lightning streak emanating from the eastern eyewall of the Category 5 storm. The image pair also shows a good example of the “stadium effect” eye geometry (where the eye diameter at the surface is smaller, and opens to a wider distance with increasing height). A larger-scale view of the entire storm from the Day/Night Band is available here; the corresponding 11.45 µm Infrared image is available here.

Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band visible (0.70 µm) imagery of Meranti, 1735 UTC on 13 September 2016 [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band visible (0.70 µm) imagery of Meranti, 1735 UTC on 13 September 2016 [click to enlarge]

DMSP-15 SSMI Microwave (85 GHz) and Himawari-8 Infrared Window (11.45 µm) images [click to enlarge]


DMSP-15 SSMI Microwave (85 GHz) and Himawari-8 Infrared Window (11.45 µm) images [click to enlarge]

In a comparison of DMSP-15 SSMI Microwave (85 GHz) and Himawari-8 Infrared Window (11.45 µm) images around 1830 UTC (above), the appearance of concentric eyewalls on the microwave data suggested that Meranti was preparing to go through an eyewalll replacement cycle, which also signaled that the storm was perhaps near maximum intensity.

This formation of concentric eyewalls was nicely depicted by the MIMIC-TC product (below).

MIMIC-TC product [click to play animation]

MIMIC-TC product [click to play animation]

=====14 September Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]


Less than 2 hours prior to landfall (which was around 1905 UTC on 14 September, over Xiamen City in the Fujian Province of China), a toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1716 UTC (above) still showed well-defined curved banding structures around the center of of the Category 2 typhoon.

Himawari-8 Infrared Window (10.4 µm) images from pre-landfall at 0600 UTC on 14 September to post-landfall at 0600 UTC on 15 September (below; also available as a 47 Mbyte animated GIF) showed that Meranti quickly dissipated as it moved inland over mainland China. The images are centered on Xiamen (station identifier ZSAM); alternate animation versions with the BD grayscale enhancement are available in MP4 and animated GIF format.

Himawari-8 Infrared Window (10.4 µm) images [click to play MP4 animation]

Himawari-8 Infrared Window (10.4 µm) images [click to play MP4 animation]

About 4 hours after landfall, good curved banding structure was still observed in DMSP-18 SSMIS Microwave (85 GHz) imagery at 2314 UTC, while the overall presentation of the storm on Himawari-8 Infrared Window (11.45 µm) imagery began to deteriorate (below).

DMSP-18 SSMIS Microwave (85 GHz) and Himawari-8 Infrared Window (11.45 µm) images [click to enlarge]

DMSP-18 SSMIS Microwave (85 GHz) and Himawari-8 Infrared Window (11.45 µm) images [click to enlarge]

Post-Tropical Cyclone Hermine

September 5th, 2016 |

GOES-13 Visible (0.63 µm) images, with buoy/ship reports plotted in yellow [click to play animation]

GOES-13 Visible (0.63 µm) images, with buoy/ship reports plotted in yellow [click to play animation]

GOES-13 (GOES-East) Visible (0.63 µm) images showed that the circulation of Post-Tropical Cyclone Hermine (NHC discussions) persisted off the US East Coast on 04 September (above; also available as an MP4 animation) and on 05 September 2016 (below; also available as an MP4 animation). On 04 September, the Royal Caribbean cruise ship Anthem of the Seas sustained some minor damage as it encountered strong winds and high waves in the northeastern quadrant of the storm (ship location | satellite images) while sailing from New Jersey to Bermuda.  Also of particular interest were the pair of mesovortices seen rotating around the main circulation center of the storm on 05 September. The GOES-13 satellite had remained in Rapid Scan Operations (RSO) mode during this period, providing images as frequently as every 5-7 minutes.

GOES-13 Visible (0.63 µm) images, with buoy/ship reports plotted in yellow [click to play animation]

GOES-13 Visible (0.63 µm) images, with buoy/ship reports plotted in yellow [click to play animation]

===== 06 September Update =====

GOES-13 Visible (0.63 µm) images, with surface/buoy/ship data plotted in yellow [click to play animation]

GOES-13 Visible (0.63 µm) images, with surface/buoy/ship data plotted in yellow [click to play animation]

On 06 September, the circulation of Post-Tropical Cyclone Hermine continued to move very slowly westward toward the Northeast US coast as it gradually weakened (above; also available as an MP4 animation). A 1600 UTC GOES-13 Visible image with plots of Metop ASCAT winds along with surface/buoy/ship reports is shown below — the maximum ASCAT surface scatterometer wind speeds were 33 knots in the western semicircle of the storm.

GOES-13 Visible (0.63 µm) image at 1600 UTC, with ASCAT winds and surface/buoy/ship reports [click to enlarge]

GOES-13 Visible (0.63 µm) image at 1600 UTC, with ASCAT winds and surface/buoy/ship reports [click to enlarge]

As of 18 UTC, all coastal Tropical Storm Warnings were discontinued by the National Hurricane Center (final advisory).

===== 07 September Update =====

MIMIC Total Precipitable Water product [click to play animation]

MIMIC Total Precipitable Water product [click to play animation]

An animation of hourly MIMIC Total Precipitable Water (TPW) product images covering the 04-07 September period {above) showed that the remnant circulation of what was formerly Post-Tropical Cyclone Hermine still contained relatively high values of TPW (in the 50-60 mm or 2.0-2.4 inch range) as it edged closer to the coast on 07 September.

 

GOES-14 SRSO-R: Tropical Disturbance near the Caribbean

August 25th, 2016 |

GOES-14 Visible (0.63 µm) images [click to play animated gif]

GOES-14 Visible (0.63 µm) images [click to play animated gif]

GOES-14 SRSO-R Imagery is being produced over the Greater Antilles on 25 August 2016 to monitor a tropical wave (Invest 99L) that is moving towards Florida and the southeast United States. The visible animation above shows a highly sheared system: a low-level circulation center (LLCC) is evident north of Hispaniola and east of the Turks and Caicos, but strong convection (overshooting tops are readily apparent) is displaced well to the east of the system. There is also considerable convection over Hispaniola.

A 2-panel comparison of GOES-14 Visible and Infrared Window images, below (also available as a large 200 Mbyte animated GIF), provided a slightly closer view of the LLCC feature.

GOES-14 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

GOES-14 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

Wind shear analyses from the CIMSS Tropical Weather site, below, show the surface circulation is within a small ribbon of relatively strong shear. Development chances will increase if the wind shear relaxes. A GOES-13 Visible image with overlays of satellite winds and wind shear is available here.

Wind Shear Analysis, 1200 UTC on 25 August 2016 [click to play animated gif]

Wind Shear Analysis, 1200 UTC on 25 August 2016 [click to enlarge]

Metop-A overflew the system at about 0200 UTC on 25 August (link to orbit path), and winds near Tropical Storm Force cover a wide swath of the southwestern Atlantic. Even if this system does not develop into a Tropical Depression, gusty winds and abundant moisture (see the animation of MIRS Total Precipitable Water from this site, below) herald a weekend when it’s appropriate to pay attention to the weather because of the potential for rain and winds.

Morphed Observations of Total Precipitable Water from MIRS, 0000 UTC 24 August - 1500 UTC 25 August [click to play animated gif]

Morphed Observations of Total Precipitable Water from MIRS, 0000 UTC 24 August – 1500 UTC 25 August [click to play animated gif]

===== 28 August Update =====

GOES-14 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

GOES-14 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

Invest 99L developed into Tropical Depression 09 around 21 UTC on 28 August. A comparison of 1-minute GOES-14 Visible (0.63 µm) and Infrared Window (10.7 µm) images, above (also available as a large 94 Mbyte animated GIF), showed the tropical depression as it moved westward through the Florida Straits.