Erosion of supercooled cloud layers downwind of industrial sites

February 16th, 2019 |

GOES-16 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images (above) revealed a cloud-free notch over northeastern Indiana during the early morning hours on 16 February 2019. The corresponding GOES-16 Cloud Top Phase product (below) indicated that the cloud layer across that region was composed of supercooled water cloud droplets. The point source of this cloud notch feature was the Steel Dynamics industrial site southeast of Columbia City — emissions from this location contained particles that acted as efficient ice condensation nuclei, causing the supercooled droplets to glaciate and fall from the cloud as snow. The cloud notch initially passed over Huntington (located about 15 miles to the south), and the Northern Indiana NWS office received a report of ice crystals or fine snow and hazy sunshine when the clearing moved over that location. The automated ASOS sensor at the Huntington airport did not report any snow, but the visibility briefly dropped to 7 miles with a lowering of cloud height just after 14 UTC.

GOES-16 Cloud Top Phase product [click to play animation | MP4]

GOES-16 Cloud Top Phase product [click to play animation | MP4]

Farther to the east, GOES-16 Visible images (below) showed prominent industrial plumes coming from the Detroit, Michigan and Cleveland, Ohio areas — with smaller plumes originating from points southeast of Lorain and southwest of Canton in Ohio. Light snow was intermittently reported at 2 sites south of Detroit as the industrial plume passed overhead. As with the previous case over Indiana, these industrial plumes were occurring within a supercooled water droplet cloud layer.

GOES-16 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

250-meter resolution Terra MODIS True Color and False Color Red-Green-Blue (RGB) images from the MODIS Today site (below) provided a more detailed view of the industrial plumes coming from the Detroit and Cleveland areas. The darker cyan color appearing within the cloud gaps was a signature of glaciated cloud material that was descending from the supercooled cloud layer, falling as snow. Since there was no snow on the ground reported that morning at Detroit in Michigan or at Cleveland and Akron in Ohio, we can be confident that the dark cyan was not a signature of surface snow cover being viewed through gaps in the cloud deck.

Terra MODIS True Color and False Color RGB images [click to enlarge]

Terra MODIS True Color and False Color RGB images at 1610 UTC [click to enlarge]

In a larger-scale view of Terra MODIS True Color and False Color RGB images from RealEarth (below), note the presence of another industrial plume with its point source south of Sarnia, Ontario — in contrast to the other industrial plumes, the emissions from that source contained particles which acted as cloud condensation nucle — causing the supercooled cloud water droplets to become smaller, which made them more reflective and exhibit a brighter white appearance in the RGB images.

Terra MODIS True Color and False Color RGB images [click to enlarge]

Terra MODIS True Color and False Color RGB images [click to enlarge]

Looking at the Ontario plume using GOES-16 Visible, Near-Infrared “Snow/Ice” (1.61 µm) and Near-Infrared “Cloud Particle Size” (2.24 µm) imagery (below), higher reflectivity of the smaller supercooled water droplets within the industrial plume is most apparent in the Near-Infrared images. This plume passed over Chatham, Ontario (CYCK), where light snow was report — though it’s unclear whether this snow was simply ongoing synoptic system and/or lake effect snow, or if there was some minor plume enhancement aiding the snowfall.

GOES-16 "Red" Visible (0.64 µm, left), Near-Infrared "Snow/Ice" (1.61 µm, center) and Near-Infrared "Cloud Particle Size" (2.24 µm, right) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm, left), Near-Infrared “Snow/Ice” (1.61 µm, center) and Near-Infrared “Cloud Particle Size” (2.24 µm, right) images [click to play animation | MP4]

The Ontario industrial plume also exhibited a warmer signature on GOES-16 Shortwave Infrared (3.9 µm) images (below), since smaller supercooled water droplets are more efficient reflectors of incoming solar radiation.

GOES-16 Near-Infrared "Snow/Ice" (1.61 µm, left) and Near-Infrared "Cloud Particle Size" (2.24 µm, center) and Shortwave Infrared (3.9 µm, right) images [click to play animation | MP4]

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm, left), and Near-Infrared “Cloud Particle Size” (2.24 µm, center) and Shortwave Infrared (3.9 µm, right) images [click to play animation | MP4]

Strong midlatitude cyclone north of Hawai’i

February 10th, 2019 |
GOES-17

GOES-17 “Red” Visible (0.64 µm) images [click to play MP4 animation]

* GOES-17 images shown here are preliminary and non-operational *

1-minute Mesoscale Domain Sector GOES-17 “Red” Visible (0.64 µm) images from the AOS site (above) showed the distinct circulation of a strong midlatitude cyclone (surface analyses) that was centered just north of Hawai’i on 10 February 2019. The pressure gradient associated with this storm produced strong winds across the island chain. Wave heights to 38.4 feet were recorded at Buoy 51208 near Kaua’i, with wind gusts to 57 knots at Buoy 51001 northwest of Kauwa’i.



GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below) revealed the presence of numerous lee waves which extended hundreds of miles downwind of the islands — most notable were those emanating from Kauwa’i.

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) images [click to play animation | MP4]

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play animation | MP4]

Derived Motion Winds calculated using GOES-15 (GOES-West) Water Vapor (6.5 µm) imagery from the CIMSS Tropical Cyclones site (below) showed targets with velocites of 150-160 knots just north of Hawai’i at 09 UTC and 12 UTC.

Derived Motion Winds calculated using GOES-15 Water Vapor (6.5 µm) imagery [click to enlarge]

Derived Motion Winds calculated using GOES-15 Water Vapor (6.5 µm) imagery [click to enlarge]

GOES-17 Air Mass RGB images (below) showed the orange to red hues signifying a lowered tropopause and increased stratospheric ozone within the atmospheric column as the storm evolved during the 09-10 February time period.

GOES-17 Air Mass RGB images [click to play MP4 animation]

GOES-17 Air Mass RGB images [click to play MP4 animation]

Suomi NPP VIIRS True Color and Infrared Window (11.45 µm) images at 23 UTC as viewed using RealEarth are shown below.

Suomi NPP VIIRS True Color and Infrared Window (11.45 µm) images at 23 UTC [click to enlarge]

Suomi NPP VIIRS True Color and Infrared Window (11.45 µm) images at 23 UTC [click to enlarge]

Cloud-top waves producing turbulence north of Hawai’i

February 6th, 2019 |
GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play MP4 animation]

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play MP4 animation]

* GOES-17 images shown here are preliminary and non-operational *

Transient pockets of cloud-top waves were evident on GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (above) north of Hawai’i on 06 February 2019. Some of the waves were located along the tops of convective cloud features, while others appeared to be randomly distributed.

Plots of rawinsonde data from Lihue, Hawai’i (below) showed that winds within the middle to upper troposphere had a general westerly component — so these mesoscale cloud-top wave features were oriented perpendicular to the flow.

Plots of rawinsonde data from Lihue, Hawai'i [click to enlarge]

Plots of rawinsonde data from Lihue, Hawai’i [click to enlarge]

There was only 1 pilot report of turbulence within the broad region exhibiting these waves, occurring at 2304 UTC at an altitude of 33,000 feet — and this appeared to coincide with a discrete wave packet that was propagating eastward (below).

GOES-17 Upper-level Water Vapor (6.2 µm) images within 30 minutes of the 2304 UTC pilot report of turbulence [click to enlarge]

GOES-17 Upper-level Water Vapor (6.2 µm) images within 30 minutes of the 2304 UTC pilot report of turbulence [click to enlarge]

While the more robust wave packets could also be seen in GOES-17 “Clean” Infrared Window (10.3 µm) images (below), their complete areal coverage was more obvious in the Water Vapor imagery — particularly where the wave features were more subtle.

GOES-17 Upper-level Water Vapor (6.2 µm) and “Clean” Infrared Window (10.3 µm) images at 2302 UTC [click to enlarge]

Aviation advisories for Significant Weather (SIGWX) had been issued for that region (below), which included a Moderate risk for Clear Air Turbulence (CAT) from 28,000-39,000 feet and the possibility of isolated/embedded Cumulonimbus (CB) clouds with tops to 38,000 feet, along with a west-northwest high-level jet stream from 290º at 90 knots. The pilot report of turbulence at 33,000 feet included winds from 261º at 81 knots.

GOES-17 Upper-level Water Vapor (6.2 µm) image, with plots of aviation Significant Weather advisories [click to enlarge]

GOES-17 Upper-level Water Vapor (6.2 µm) image, with plots of aviation Significant Weather advisories that were in effect at that time [click to enlarge]

The cloud-top waves were also seen in a sequence of VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP, viewed using RealEarth (below).

VIIRS Infrared Window (11.45 µm) images from NOAA-20 (at 2230 and 0030 UTC) and Suomi NPP (at 2320 UTC) [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 (at 2230 and 0030 UTC) and Suomi NPP (at 2320 UTC) [click to enlarge]

Cold weather outbreak across the Upper Midwest and Great Lakes

January 30th, 2019 |

GOES-16 Air Mass RGB images, 28-30 January [click to play MP4 animation]

GOES-16 Air Mass RGB images, 28-30 January [click to play MP4 animation]

A highly-amplified upper air and jet stream pattern allowed a lobe of the polar vortex to migrate southward across southern Canada and the north-central US — leading to an outbreak of arctic air throughout the Upper Midwest and Great Lakes during the 29 January – 30 January 2019 period. The path and expansion of the cold arctic air was apparent in GOES-16 (GOES-East) Air Mass RGB images from the AOS site (above) — which first became evident over the Canadian arctic beginning on 28 January. The coldest air exhibited pale shades of yellow to beige in the Air Mass RGB images.

GOES-16 “Clean” Infrared Window (10.3 µm) images (below) also showed the southward expansion of arctic air into the north-central US — surface infrared brightness temperatures of -30 to -40ºC (darker blue to green enhancement) covered a large area. Such cold infrared brightness temperatures are normally associated with clouds in the middle to upper troposphere. Surface air temperatures of -20 to -40ºF were widespread, along with wind chill values of -40 to -70ºF, leading to numerous school and business closures. Two of the coldest official temperatures in the US on the morning of 30 January were -48ºF at Norris Camp, Minnesota and -44ºF at Bottineau, North Dakota (the high temperature in Bottineau on the previous day, 29 January, was only -26ºF); however, there were a few North Dakota Department of Transportation roadside sensors that reported low temperatures of -49ºF.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, 28-30 January [click to play MP4 animation]

GOES-16 True Color RGB images (below) revealed a variety of multiple-band and single-band lake effect snow features as the arctic air moved across the Great Lakes. In addition, elongated and long-lived cloud bands created snow squall conditions across parts of Ohio and Pennsylvania.

GOES-16 True Color images [click to play MP4 animation]

GOES-16 True Color images [click to play MP4 animation]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 (at 1802 UTC) and Suomi NPP (at 1852 UTC) viewed using RealEarth (below) provided a closer look at the cloud bands across Ohio and Pennsylvania.

True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 (at 1802 UTC) and Suomi NPP (at 1852 UTC) [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 (at 1802 UTC) and Suomi NPP (at 1852 UTC) [click to enlarge]


=======================================================

GOES-16 Clear-sky Total Precipitable Water, 1202 UTC on 30 January 2019 (Click to enlarge)

In addition to being extremely cold, the airmass over the Upper Midwest was extremely dry. The image above shows the Baseline GOES-R Total Precipitable Water product. The default AWIPS color enhancement has been modified to better capture the extreme dryness. Regions in light blue over western Minnesota and the eastern Dakotas curving through Iowa into northern Illinois show TPW values around 0.01″ ; green shadings over Wisconsin and eastern Minnesota correspond to values closer to 0.03″. In such dry airmasses, it is possible to see surface features in the infrared 7.3 low-level ABI Water Vapor Channel, Band 10, and the morning of 30 January was no exception, below. Surface features like rivers are notable in Illinois, for example. Even the heat island of the Minneapolis/St. Paul is apparent (albeit barely).  Surface features over northern Minnesota and Wisconsin aren’t quite so apparent, perhaps because of the increased amounts of moisture there.  There is likely less surface temperature contrast there, also, as rivers/lakes are more likely frozen.  It is the temperature contrast — as best exemplified by the Great Lakes shorelines — that allows features to appear in the Water Vapor imagery.

GOES-16 Low-Level Water Vapor Infrared (7.3 µm) Imagery, 1202 UTC on 30 January 2019 (Click to enlarge)

Weighting Functions (in real time, from this site) allow for an estimate of where information in different water vapor channels will be detected by the satellite. In the 0000 UTC 30 January 2019 example, below, from Chanhassen, MN (when total precipitable water there was 0.01″), a large signal is apparent from the low-level water vapor channel (7.3 µm); in fact, most of the information detected by the satellite was coming from the surface!  Even the mid-level water vapor (6.9 µm) had a component from the surface.  Weighting Functions for Davenport Iowa (The axis of the driest air shifted from near Chanhassen at 0000 UTC to near Davenport at 1200 UTC) at 0000 UTC and 1200 UTC are shown here; Note in the toggle that the level from which information is received by the satellite drops from 0000 to 1200 UTC as dry air moves in.

Clear-sky Weighting Function from Chanhassen MN, 0000 UTC on 30 January 2019 (Click to enlarge)

The GOES-16 Baseline Land Surface Temperature product, below, from 1200 UTC, shows many values at/below -45 F (purple shading) over Minnesota.  Dark blue values are around -25 F.  Note the relatively warm region over western Iowa, in cyan.  That part of Iowa lacks snowcover and exceptional cold rarely happens over bare ground.

GOES-16 Baseline Land Surface Temperature, 1202 UTC on 30 January 2019 (Click to enlarge)

===== 31 January Update =====

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with and without plots of hourly surface observations [click to play animation | MP4]

Across much of the Upper Midwest, the coldest temperatures occurred on the morning of 31 January. GOES-16 Infrared images (above) showed much of northeastern Minnesota and far northwestern Wisconsin — the low temperature of -56ºF at Cotton was only 4 degrees warmer than the all-time record low for Minnesota, and the low temperature of -47ºF at Butternut was 8 degrees warmer than the all-time record  low for Wisconsin (both of those records were set in early February 1996). The -56ºF in Cotton was not only the coldest temperature in the Lower 48 states on 31 January, but was also significantly colder than any official reporting station in Alaska that day. Also of interest in northeastern Minnesota, note the warmer plumes (darker blue enhancement; brighter greens are coldest) coming from power plants and industrial sites in the Iron Range area.

Farther to the south, GOES-16 Infrared images covering the Minnesota/Wisconsin/Iowa/Illinois region (below) also showed widespread cold surface brightness temperatures (shades of green). All-time record low temperatures were set at Cedar Rapids in Iowa (-30ºF) and at Moline (-33ºF) and Rockford (-31ºF) in Illinois. The cooperative observer at Mt. Carroll in northwestern Illinois reported a low of -38ºF — which, if verified, will establish a new all-time record minimum temperature for the state of Illinois.

GOES-16 "Clean" Infrared Window (10.3 µm) images, with plots of hourly surface observations [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.3 µm) images, with plots of hourly surface observations [click to play animation | MP4]

The recent stretch of days with cold air in place had helped the ice coverage to increase significantly in western Lake Superior — and the transition from northerly/northwesterly cold air advection to southwesterly warm air advection at the surface began to fracture a lot of this newly-formed lake ice (below).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation | MP4]

Ice coverage had also increased across much of western/central Lake Erie, although areas of open water continued to supply latent heat to help generate lake effect snow bands (below).

GOES-16 "Red" Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation | MP4]

A sequence of Terra MODIS True Color RGB images (below) showed substantial growth of nearshore ice in the southern end of Lake Michigan from 29 to 31 January.

Terra MODIS True Color RGB images [click to enlarge]

Terra MODIS True Color RGB images [click to enlarge]

.A summary of this cold outbreak was compiled by NWS Duluth, NWS La Crosse, NWS Twin Cities and NWS Grand Forks.