Large-scale blowing dust event

April 10th, 2019 |

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

Strong winds — gusting as high as 77 mph in New Mexico and 88 mph in Texas — associated with a rapidly-intensifying midlatitude cyclone generated large plumes of blowing dust (originating from southeastern Arizona,southern New Mexico, northern Mexico and western Texas) on 10 April 2019. GOES-16 (GOES-East) Split Window (10.3-12.3 µm) images (above) helped to highlight the areas of blowing dust, which initially developed along and behind a cold front after 15 UTC.

GOES-16 Split Window (10.3-12.3 µm) images, with hourly plots of surface winds and gusts [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images, with hourly plots of surface wind barbs and gusts [click to play animation | MP4]

GOES-16 Split Window images with hourly plots of surface wind barbs and gusts (above) showed the distribution of strong winds across the region, while plots of the surface visibility (below) showed decreases to 1/4 mile at Deming, New Mexico, 1/2 mile at Lubbock, Texas and 4 miles at Altus, Oklahoma.

GOES-16 Split Window (10.3-12.3 µm) images, with hourly plots of surface visibility [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images, with hourly plots of surface visibility [click to play animation | MP4]

GOES-16 True Color Red-Green-Blue (RGB) images (below; courtesy of Rick Kohrs, SSEC) depicted the blowing dust as shades of tan to light brown. Willcox Playa was the source of the dust plume coming from southeastern Arizona. Note that the dust plume emanating from White Sands, New Mexico was lighter in appearance compared to the other tan/brown-colored areas of blowing dust — this is due to the white gypsum sand that comprises the surface of White Sands National Monument.

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

250-meter resolution MODIS True Color RGB images from the MODIS Today site (below) provided a more detailed view of the plume streaming northeastward from its White Sands source. On the later Aqua image, dense tan-colored areas of blowing dust had developed below the thin higher-altitude veil of brighter gypsum aerosols that had earlier been lofted from White Sands.

MODIS True Color RGB images from Terra and Aqua [click to enlarge]

MODIS True Color RGB images from Terra and Aqua [click to enlarge]

A NOAA-20 True Color RGB image viewed using RealEarth is shown below. 19 UTC surface observations at 3 sites near White Sands included Las Cruces KLRU (visibility 3 miles, wind gusting to 46 knots), Alamogordo KALM (visibility 3 miles, wind gusting to 43 knots) and Ruidoso KSRR (visibility 5 miles, wind gusting to 55 knots). The strong winds and dense areas of blowing dust reducing surface visibility not only impacted ground transportation but also posed a hazard to aviation.

NOAA-20 True Color RGB image at 1928 UTC [click to enlarge]

NOAA-20 True Color RGB image at 1928 UTC [click to enlarge]

===== 11 April Update =====

In a larger-scale view of GOES-16 Split Window images (below), the yellow dust signature could be followed during the subsequent overnight hours and into the following day on 11 April, as the aerosols were being transported northeastward across the Upper Midwest. There were widespread reports and photos of dust residue on vehicles and tan/brown-colored snow in parts of Nebraska, Iowa, Minnesota and Wisconsin.

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

IDEA forward trajectories (below) — initialized from a cluster of elevated Aura OMI Aerosol Index points over Mexico, New Mexico and Texas — passed directly over areas of model-derived precipitation across the Upper Midwest, providing further support of precipitation scavenging of dust aerosols. Interestingly, a similar event of long range dust transport occurred on 10-11 April 2008.

IDEA forward trajectories initialized from a cluster of elevated Aqua MODIS Aerosol Optical Depth points over NM/TX [click to play animation]

IDEA forward trajectories initialized from a cluster of elevated Aqua MODIS Aerosol Optical Depth points over NM/TX [click to play animation]

HYSPLIT model 24-hour forward trajectories initialized at 3 locations — El Paso, Lubbock and Amarillo in Texas — showed a few of the likely dust transport pathways toward the Upper Midwest at 3 different levels (below).

HYSPLIT model forward trajectories initialized at El Paso, Lubbock and Amarillo, Texas [click to enlarge]

HYSPLIT model 24-hour forward trajectories initialized at El Paso, Lubbock and Amarillo, Texas [click to enlarge]

GOES-16 True Color RGB images from the AOS site (below) showed that some clouds across the Upper Midwest exhibited a subtle light brown hue at times.

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

===== 12 April Update =====

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images (above) showed that the yellow signature of dust aerosols aloft had wrapped all the way around the southern and eastern sectors of the occluded low on 12 April.

Ground-based lidar at the University of Wisconsin – Madison confirmed the presence of elevated levels of aerosol loading between the surface and 6 km.

Lidar aerosol class [click to enlarge]

Lidar aerosol class [click to enlarge]

Spring Hill Fire in New Jersey

March 31st, 2019 |

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm, left), Near-Infrared “Cloud Particle Size” (2.24 µm, center) and Shortwave Infrared (3.9 µm, right) images [click to play animation | MP4]

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm, left), Near-Infrared “Cloud Particle Size” (2.24 µm, center) and Shortwave Infrared (3.9 µm, right) images [click to play animation | MP4]

The Spring Hill Fire began to burn in central New Jersey around 1745 UTC (1:45 PM EDT) on 30 March 2019. GOES-16 (GOES-East) Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (above) showed the hot thermal signature of the fire as it burned into the subsequent nighttime hours and the following morning. Smoke from the fire drifted northeastward, reducing the surface visibility at Lakehurst Naval Air Station (KNEL), Toms River (KMJX) and Belmar (KBLM).

GOES-16 also initially viewed this area with 1-minute imagery from 1700-1859 UTC (since the Mesoscale Sector #1 normally covers New Jersey), and first displayed a fire hot spot around 1745 UTC. The animation below shows Visible imagery (0.64 µm), with Shortwave Infrared imagery in the background. One-minute data was valuable during these two hours because the rapidly moving clouds occasionally allowed brief views of the surface. It’s also easier to identify the smoke plume as a coherent structure with a 1-minute cadence (vs. the 5-minute cadence available with CONUS scans). At 1900 UTC, GOES-16 Mesoscale Sector #1 was repositioned to cover developing convection over the mid-Mississippi River Valley, so 1-minute views of New Jersey were terminated.

GOES-16 “Red” Visible (0.64 µm) imagery, with Shortwave Infrared (3.9 µm) pixels displayed through the semi-transparent visible images [click to play animation | MP4]

The GOES Fire Detection and Characterization Algorithm (the Baseline fire-detection product) is shown below. This product is not computed in Mesoscale Domains, so only CONUS imagery with a 5-minute cadence is shown. The widespread cloud cover affected the signal, but the fire was still detected. Note that the Fire Power product identified the fire pixels more frequently (consider the 1832 UTC image, for example).

GOES-16 Shortwave Infrared (3.9 µm, upper left), GOES Fire Temperature (upper right), GOES Fire Area (lower right) and GOES Fire Power (lower left) [click to play animation | MP4]

The rapid growth of the fire thermal signature was apparent in a sequence of 3 daytime and 3 nighttime VIIRS Shortwave Infrared (3.74 µm) images from NOAA-20 and Suomi NPP (below). Note: some of the NOAA-20 images — 1750 UTC on 30 March, along with 0609 and 0749 UTC on 31 March — are incorrectly labeled as Suomi NPP.

NOAA-20 and Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to enlarge]

NOAA-20 and Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to enlarge]

Signatures of the fire were also seen in a comparison of Suomi NPP VIIRS Near-Infrared (1.61 µm and 2.24 µm), Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images (below, courtesy of William Straka, CIMSS).

Suomi NPP VIIRS Near-Infrared (1.61 µm and 2.24 µm), Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Near-Infrared (1.61 µm and 2.24 µm), Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]


===== 01 April Update =====

Terra MODIS True Color and False Color images on 01 April [cick to enlarge]

Terra MODIS True Color and False Color RGB images on 01 April [click to enlarge]

In a comparison of Terra MODIS True Color and False Color RGB images on 01 April from the MODIS Today site (above) the fire burn scar was evident in the False Color image.

The appearance of the burn scar was also seen in a before/after toggle between Terra MODIS False Color RGB images on 27 March and 01 April (below).

Terra MODIS False Color RGB images on 28 March and 01 April [click to enlarge]

Terra MODIS False Color RGB images on 28 March and 01 April [click to enlarge]

A closer view of the 01 April Terra MODIS False Color RGB image using RealEarth (below) showed that the northeastern edge of the burn scar was near Route 72 (which had to be closed as the fire was being contained), and may have threatened structures at Coyle Field.

Terra MODIS False Color RGB and Google Maps background images [click to enlarge]

Terra MODIS False Color RGB and Google Maps background images [click to enlarge]

===== 08 April Update =====

Landsat-8 False Color RGB image, with Google Maps background [click to enlarge]

Landsat-8 False Color RGB image, with Google Maps background [click to enlarge]

A 30-meter resolution Landsat-8 False Color RGB image from 08 April (above) provided a very detailed view of the Spring Hill Fire burn scar. It suggested that the fire did cross Route 72 at Coyle Field.

Large ice lead near Utqiagvik (Barrow), Alaska

March 28th, 2019 |

Landsat-8 False Color RGB image at 2222 UTC [click to enlarge]

Landsat-8 False Color RGB images on 21 March and 28 March [click to enlarge]

A toggle between 30-meter resolution Landsat-8 False Color Red-Green-Blue (RGB) images viewed using RealEarth (above) revealed a large ice lead that had opened up to the east of Utqiagvik (Barrow), Alaska on 28 March 2019. Snow and ice appear as darker shades of cyan in the RGB image, with open water exhibiting a dark blue to black appearance.

A sequence of True Color RGB images from NOAA-20 / Suomi NPP VIIRS and Terra MODIS (below) showed the ice lead becoming wider with time during a 5-hour period (note: the time stamps on the images do not reflect the actual time each satellite passed over the Utqiagvik area). The MODIS image appeared the sharpest, since that instrument has a 250-meter resolution in the visible spectral bands (compared to 375 meters for VIIRS).

True Color RGB images from NOAA-20 and Suomi NPP VIIRS and Terra MODIS [click to play animation]

True Color RGB images from NOAA-20 / Suomi NPP VIIRS and Terra MODIS [click to play animation]

In a 14-day series of Terra MODIS composites (below) it can be seen that the same general ice fracture line had opened and closed a few times during the 15-28 March period, depending on the influences of surface wind stress and sea currents. Days with strong and persistent southwesterly winds led to an opening of the ice lead (such as 20 March); however, the largest 1-day change — and the largest opening of the ice lead — occurred from 27-28 March (MODIS | VIIRS), when the strong southwest winds were bringing unseasonably warm air (over 30ºF above normal) across the area. The daily high temperature at Utqiagvik on 28 March was 30ºF, which set a new record high for the date (the normal high temperature for 28 March is -3ºF). Incidentally, this period of above-normal temperatures contributed to Utqiagvik having its warmest March on record.

Daily composites of Terra MODIS True Color RGB images, 15-28 March [click to play animation]

Daily composites of Terra MODIS True Color RGB images, 15-28 March [click to play animation | MP4]

Strong cyclone near Antarctica

March 26th, 2019 |

Composites of geostationary and polar orbiter Infrared imagery [click to play animation]

Composites of geostationary and polar orbiter Infrared imagery [click to play animation]

Composites of Infrared imagery (above) and Water Vapor imagery (below) from the AMRC site showed an anomalously strong (MSLP | 925 hPa winds | source) cyclone that was moving southeastward across the South Pacific Ocean toward the coast of Antarctica on 26 March 2019. These composites blend images from both geostationary and polar orbiting satellites; the storm is located in the upper right quadrant of the images. On the Infrared imagery, brighter white shades over much of the middle of Antarctica indicated a very cold surface — in fact, surface air temperatures were as cold as -84ºF over the interior of the continent at 23 UTC.

Composites of geostationary and polar orbiter Water Vapor imagery [click to play animation]

Composites of geostationary and polar orbiter Water Vapor imagery [click to play animation]

The storm was evident along the southern limb of GOES-16 Full Disk scans, as seen on Mid-level Water Vapor (6.9 µm) and “Red” Visible (0.64 µm) images (below). The location of AMRC AWS station 8930 (Thurston Island) near the coast of Ellsworth Land in West Antarctica is indicated in red.

GOES-16 Mid-level Water Vapor images [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 µm) images [click to play animation | MP4]

GOES-16 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

This storm was also evident at the bottom center of a GOES-17 + GOES-16 composite of north-to-south True Color Red-Green-Blue (RGB) swaths of 15-minute illumination at local solar noon — beginning at 12 UTC in the east, and ending at 03 UTC in the west — combined and displayed in a Mollweide projection (below; courtesy of Rick Kohrs, SSEC).

GOES-17 + GOES-16 True Color RGB image [click to enlarge]

GOES-17 + GOES-16 True Color RGB image [click to enlarge]

A time series of surface observation data from AWS station 8930 on Thurston Island (below) showed that southeasterly winds peaked at 113 knots (58 m/s) late in the day on 26 March as the strong low pressure system approached. According to AMRC staff, this particular AWS is located on a nunatak near Parker Peak in the Walker Mountains (map) — such an exposure is prone to periods of strong winds, requiring a recent retrofitting of special instrumentation designed to withstand and measure higher wind speeds.

Tiime series of surface observation data from AWS station 8930 Thurston Island [click to enlarge]

Time series of surface observation data from AWS station 8930 Thurston Island [click to enlarge]

A closer look with GOES-16 Visible and Low-level Water Vapor (7.3 µm) images (below) revealed small wave perturbations in the cloud field and the eventual formation of a banner cloud as Peter I Island was acting as an obstacle to the strong boundary layer winds south of the storm center.

GOES-16 "Red" Visible (0.64 µm. left) and Low-level Water Vapor (7.3 µm, right) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm. left) and Low-level Water Vapor (7.3 µm, right) images [click to play animation | MP4]

A timely overpass of the Landsat-8 satellite provided a 30-meter resolution Landsat-8 False Color RGB image, viewed using RealEarth (below), of these orographically-induced cloud perturbations.

Landsat-8 False Color image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

The orographic wave clouds downwind of Peter I Island could also be seen on 375-meter resolution Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images at 19 UTC and 21 UTC (below).

Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images 1t 19 UTC and 21 UTC [click to enlarge]

Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images at 19 UTC and 21 UTC [click to enlarge]