ACSPO SSTs from VIIRS in AWIPS

October 10th, 2019 |

ACSPO SSTs (range from 41 F to 68 F or 5 C to 20 C) at 0818 UTC on 10 October 2019 (Click to enlarge)

SSEC/CIMSS is producing Advanced Clear Sky Processor for Ocean ACSPO Sea Surface Temperatures (SSTs) from Direct Broadcast data received in Madison. (Here is a blog post on ACSPO SSTs in Guam) The example above shows Great Lakes water temperatures around 0800 UTC on 10 October 2019. The example below shows SSTs computed from the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi-NPP and NOAA-20 around Vancouver Island from 8 through 10 October (a period when the Pacific Northwest was enjoying a spate of clear skies that are necessary for ACSPO SST computation).  These data are available via LDM feed.

ACSPO SSTs (range from 41 F to 68 F or 5 C to 20 C) from 8 October through 10 October 2019 (Click to enlarge)

Super Typhoon Hagibis in the West Pacific Ocean

October 7th, 2019 |

Himawari-i8

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

JMA Himawari-8 “Clean” Infrared Window (10.4 µm) images (above) showed the pinhole eye of Super Typhoon Hagibis as it rapidly intensified to a Category 5 storm (ADT | SATCON) by 12 UTC on 07 October 2019. Hagibis exhibited some trochoidal motion and variations in forward speed as it approached the Northern Mariana Islands, eventually moving just south of the small uninhabited island of Anatahan (north of Saipan, station identifier PGSN) around 15 UTC.

A toggle between VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP (below) showed the eye just west of Anatahan.

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP (credit: William Straka, CIMSS) [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP (credit: William Straka, CIMSS) [click to enlarge]

During the period 06 October/2014 UTC to 07 October/0714 UTC, Himawari-8 “Red” Visible (0.64 µm) images (below) showed the initial period of rapid intensification, during which Hagibis developed a well-defined pinhole eye.

Himawari-8 "Red" Visible (0.64 µm) images [click to play animation | MP4]

Himawari-8 “Red” Visible (0.64 µm) images [click to play animation | MP4]

Hagibis was moving over warm West Pacific water with high values of Sea Surface Temperature and Ocean Heat Content — the storm was also moving through an environment characterized by low deep-layer wind shear.

===== 08 October Update =====

Himawari-8 "Clean" Infrared Window (10.4 µm) images [click to play animation | MP4]

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

2.5-minute rapid scan Himawari-8 Infrared images (above) showed Hagibis during an eyewall replacement cycle (erosion of the small inner eye, with the subsequent formation of a larger-diameter eye). The small inner eyewall could be seen rotating within the larger eye as this transition was taking place. Once the eyewall replacement cycle was completed, Hagibis re-intensified to a Category 5 storm at 18 UTC.

VIIRS Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 (below) displayed the eye and eyewall region of the Category 4 storm.

VIIRS Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 (courtesy of William Straka, CIMSS) [click to enlarge]

A toggle between VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1556 UTC (below) provided a nighttime view of Hagibis.

VIIRS Day/Night Band (0.7 µm ) and Infrared Window (11.45 µm) images at 1556 UTC [click to enlarge]

VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1556 UTC (courtesy of William Straka, CIMSS) [click to enlarge]

Decker Fire in Colorado

October 2nd, 2019 |

GOES-16 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above) showed the afternoon/evening smoke plume and the persistent thermal anomaly (cluster of hot pixels) associated with the Decker Fire burning just southwest of Salida, Colorado on 02 October 2019.

A closer view of the fire was provided by a 4-panel comparison of GOES-16 Shortwave Infrared, Fire Power, Fire Temperature and Fire Area products (below). More information on these GOES Fire Detection and Characterization Algorithm (FDCA) products can be found here. Windy conditions on this day —  with sustained speeds of 20-30 mph and gusts to 46 mph — promoted rapid fire growth during the afternoon hours.

GOES-16 Shortwave Infrared (3.9 µm), Fire Power, Fire Temperature and Fire Area [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 µm), Fire Power, Fire Temperature and Fire Area [click to play animation | MP4]

A sequence of VIIRS True Color Red-Green-Blue (RGB) and Infrared Window images from Suomi NPP and NOAA-20 as viewed using RealEarth (below) showed the smoke plume and the fire’s thermal anomaly (cluster of dark black pixels).

VIIRS True Color RGB and Infrared Window (11.45 um) images from Suomi NPP and NOAA-20 [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 [click to enlarge]

A time series of surface observation data from the Salida Airport (identifier KANK, located just northwest of the fire) revealed southwesterly winds gusting to 20-29 knots as the dew point dropped to the -1 to -11ºF range — creating Relative Humidity values as low as 4% — during the afternoon hours (below).

Time series of surface observation data from Salida, Colorado [click to enlarge]

Time series of surface observation data from Salida, Colorado [click to enlarge]

===== 03 October Update =====

GOES-17 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

The Decker Fire continued to burn on 03 October, as seen using 1-minute Mesoscale Domain Sector GOES-17 “Red” Visible and Shortwave Infrared images (above). Although surface winds were still gusting as high as 30 knots at Salida, additional boundary layer moisture (dew points were in the 20s F) helped to slow the rate of fire growth compared to the previous day. The southeasterly winds transported some low-altitude smoke toward Salida, reducing the visibility to 5-7 miles at times (below).

Time series of surface observation data from Salida, Colorado [click to enlarge]

Time series of surface observation data from Salida, Colorado [click to enlarge]

A comparison of GOES-16 (GOES-East) and GOES-17 (GOES-West) Shortwave Infrared images with topography (below) demonstrated the effect of large satellite viewing angles on apparent fire location in areas of rugged terrain — note the offset in the position of the Decker Fire thermal anomaly between the 2 satellites (the viewing angle of the fire from each satellite is about 53 degrees).

GOES-16 and GOES-17 Shortwave Infrared (3.9 µm) images, with topography [click to play animation | MP4]

GOES-16 and GOES-17 Shortwave Infrared (3.9 µm) images, with topography (highways are plotted in cyan) [click to play animation | MP4]

Hurricane Lorenzo reaches Category 5 intensity

September 29th, 2019 |

GOES-16 "Clean" Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 (GOES-East) “Clean” Infrared Window (10.35 µm) images (above) showed Hurricane Lorenzo during the time it intensified to a Category 5 storm around 0130 UTC on 29 September 2019. A plot of the CIMSS Advanced Dvorak Technique (below) indicated a peak intensity estimate of 143 knots from 0220-0820 UTC.

Plot of the CIMSS Advanced Dvorak Technique (ADT) for Hurricane Lorenzo [click to enlarge]

Plot of the CIMSS Advanced Dvorak Technique (ADT) for Hurricane Lorenzo [click to enlarge]

 


A toggle between NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0425 UTC is shown below.

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (courtesy of William Straka, CIMSS) [click to enlarge]

GOES-16 Water Vapor images, with contours and streamlines of deep-layer wind shear [click to play animation]

GOES-16 Water Vapor (6.9 µm) images, with contours and streamlines of deep-layer wind shear [click to play animation]

Lorenzo was moving through an environment characterized by low values of deep-layer vertical wind shear (above). In addition, Lorenzo was moving over water having warm Sea Surface Temperatures but only modest Ocean Heat Content (below).

Sea Surface Temperature and Ocean Heat Content on 29 September, with a plot of the track/intensity of Lorenzo [click to enlarge]

Sea Surface Temperature and Ocean Heat Content on 29 September, with a plot of the track/intensity of Lorenzo [click to enlarge]