Hurricane Hermine

September 1st, 2016

GOES-13 Visible (0.63 µm) images, with surface/buoy/ship reports plotted in yellow [click to play animation]

GOES-13 Visible (0.63 µm) images, with surface/buoy/ship reports plotted in yellow [click to play animation]

Hermine was upgraded to a Hurricane over the Gulf of Mexico around 20 UTC on 01 September 2016. GOES-13 (GOES-East) Visible (0.63 µm) images (above) showed improvement in the appearance of curved banding structures around the eye late in the day. The GOES-13 satellite had been placed into Rapid Scan Operations (RSO) mode, providing images as frequently as every 5-7 minutes. Note that Hurricane Hermine developed from Tropical Invest 99L, which was sampled by 1-minute GOES-14 imagery beginning on 25 August; unfortunately, the 1-minute Super Rapid Scan Operations for GOES-R (SRSO-R) test period ended at 1115 UTC on 29 August (however, imaging of the evolution of Tropical Depression 9 to Hurricane Hermine continued at 15-minute intervals).

The corresponding GOES-13 Infrared Window (10.7 µm) images (below) revealed the eventual formation of a distinct eye, with bursts of convection exhibiting cloud-top IR brightness temperatures in the -75º to -80º C range (shades of white to violet pixels) in the western and southern semicircles of the eyewall region. Hermine became the first hurricane to make landfall in Florida since Wilma in 2005.

GOES-13 Infrared Window (10.7 µm) images, with surface/buoy/ship reports plotted in yellow [click to play animation]

GOES-13 Infrared Window (10.7 µm) images, with surface/buoy/ship reports plotted in yellow [click to play animation]

A Suomi NPP VIIRS true-color Red/Green/Blue (RGB) image visualized using RealEarth (below) provided a detailed view of the curved banding around the western and southern portion of the eye.

Suomi NPP VIIRS true-color image [click to enlarge]

Suomi NPP VIIRS true-color image [click to enlarge]

A comparison of DMSP-17 SSMIS Microwave (85 GHz) and GOES-13 Infrared Window (10.7 µm) images around 2315 UTC (below) depicted a much larger eye presentation on microwave vs infrared — the microwave image showed the curved banding structure around an eye that was still not well-organized.

DMSP-17 SSMIS Microwave (85 GHz) and GOES-13 Infrared Window (10.7 µm) images [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) and GOES-13 Infrared Window (10.7 µm) images [click to enlarge]

While Hermine passed over waters exhibiting warm Sea Surface Temperature values in the eastern Gulf of Mexico, the Ocean Heat Content values were only modest (below).

Sea Surface Temperature and Ocean Heat Content values [click to enlarge]

Sea Surface Temperature and Ocean Heat Content values [click to enlarge]

The high values of Total Precipitable Water (TPW) associated with Hermine were evident on hourly composites of morphed TPW from MIRS sensors (below). Rainfall amounts exceeded 22 inches in Florida (WPC storm summary)

Morphed Total Precipitable Water derived from MIRS sensors [click to play animation]

Morphed Total Precipitable Water derived from MIRS sensors [click to play animation]


===== Post-landfall Update, 02 September =====
 

Suomi-NPP overflew Hermine shortly after 0700 UTC on 02 September, after its 0530 UTC landfall near St. Mars FL. The toggle below shows the VIIRS 0.7 µm Day/Night Band and the 11.45 µm Infrared Window imagery. Both show the asymmetric nature of the storm. Rain and clouds extend quite a distance to the south and east of the storm, but not far to the west. The infrared imagery shows cold cloud tops surrounding the storm center southeast of Tallahassee, with very cold cloud tops also over Tampa FL and near Savannah GA with bands associated with the storm. Cloud detail is missing in the Day/Night Band image because of the lack of lunar illumination — a New Moon occurred early on 01 September — however, high-altitude mesospheric airglow waves (references: 1 | 2 | 3) can be seen off the east coast of Florida and Georgia, excited by Hermine’s bands of strong thunderstorms.

Suomi NPP Day/Night Band Visible (0.70 µm) and Infrared Window (11.45 µm) images at 0723 UTC on 2 September [click to enlarge]

Suomi NPP Day/Night Band Visible (0.70 µm) and Infrared Window (11.45 µm) images at 0723 UTC on 2 September [click to enlarge]

A toggle between before-landfall (0319 UTC Terra MODIS) and after-landfall (0814 UTC POES AVHRR) Infrared images, below, shows the expected trend of warming cloud-top IR brightness temperatures and a consolidation into a more compact storm circulation.

11.0 µm Terra MODIS (0319 UTC) and 12.0 µm POES AVHRR (0814 UTC) Infrared images [click to enlarge]

11.0 µm Terra MODIS (0319 UTC) and 12.0 µm POES AVHRR (0814 UTC) Infrared images [click to enlarge]

===== 03 September Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0707 UTC on 03 September (above; courtesy of William Straka, SSEC) showed that Hermine — still being classified as a Tropical Storm — continued to produce mesospheric airglow waves as it moved off the East Coast of the US. Numerous bright white streaks were also evident on the Day/Night Band image, due to cloud illumination from intense lightning activity.

During the following daylight hours of 03 September, GOES-13 (GOES-East) Visible (0.63 µm) images (below: also available as an MP4 animation) showed the circulation of post-tropical cyclone Hermine. In eastern North Carolina, winds gusts as high as 80 mph were recorded, with rainfall amounts as great as 8.54 inches (NWS Newport/Morehead City); the storm also produced a few tornadoes (SPC Storm Reports). In southeastern Virginia, winds gusted to 73 mph (NWS Wakefield). A few of the heavier rainfall amounts for individual states are listed here.

GOES-13 Visible (0.63 µm) images, with surface and buoy wind barbs plotted in yellow and wind gusts (knots) plotted in red [click to play animation]

GOES-13 Visible (0.63 µm) images, with surface and buoy wind barbs plotted in yellow and wind gusts (knots) plotted in red [click to play animation]

A Suomi NPP VIIRS true-color image visualized using RealEarth (below) showed the clouds associated with Hermine at 1827 UTC.

Suomi NPP VIIRS true-color image [click to enlarge]

Suomi NPP VIIRS true-color image [click to enlarge]

Mesoscale Convective Vortex (MCV) in Texas

June 12th, 2016

GOES-13 Infrared Window (10.7 µm) images [click to play animation]

GOES-13 Infrared Window (10.7 µm) images [click to play animation]

GOES-13 Infrared Window (10.7 µm) images (above) showed a large Mesoscale Convective System (MCS) that developed in far eastern New Mexico after 2000 UTC on 11 June 2016, then moved eastward and eventually southward over West Texas during the nighttime hours on 12 June. The MCS produced wind gusts to 75 mph and hail of 1.00 inch in diameter in Texas (SPC storm reports).

Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images [click to enlarge]


Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images at 0801 UTC or 3:01 am local time (above) showed cloud-top infrared brightness temperatures were as cold as -83º C (violet color enhancement), along with a number of bright streaks on the Day/Night Band image due to cloud illumination by intense lightning activity (there were around 5000 cloud-to-ground lightning strikes associated with this MCS). On the infrared image, note the presence of cloud-top gravity waves propagating outward away from the core of overshooting tops.

This MCS produced heavy rainfall, with as much as 3.44 inches reported near Lomax (NWS Midland TX rainfall map | PNS). An animation of radar reflectivity (below, courtesy of Brian Curran, NWS Midland) showed the strong convective cells moving southward (before the Midland radar was struck by lightning and temporarily rendered out of service).

Midland, Texas radar reflectivity [click to play MP4 animation]

Midland, Texas radar reflectivity [click to play MP4 animation]

During the subsequent daytime hours, GOES-13 Visible (0.63 µm) images (below) revealed the presence of a large and well-defined Mesoscale Convective Vortex (MCV) as the cirrus canopy from the decaying MCS eroded. A fantastic explanation of this MCV was included in the afternoon forecast discussion from NWS Dallas/Fort Worth. New thunderstorms were seen to develop over North Texas during the late afternoon and early evening hours as the MCV approached — there were isolated reports of hail and damaging winds with this new convection (SPC storm reports). Initiation of this new convection may have also been aided by convergence of the MCV with a convective outflow boundary moving southward from Oklahoma.

GOES-13 Visible (0.63 µm) images [click to play animation]

GOES-13 Visible (0.63 µm) images [click to play animation]

A sequence of Visible images from POES AVHRR (0.86 µm), Terra MODIS (0.65 µm), and Suomi NPP VIIRS (0.64 µm) (below) showed snapshots of the MCV at various times during the day.

Visible images from POES AVHRR (0.86 µm), Terra MODIS (0.65 µm), and Suomi NPP VIIRS (0.64 µm) [click to enlarge]

Visible images from POES AVHRR (0.86 µm), Terra MODIS (0.65 µm), and Suomi NPP VIIRS (0.64 µm) [click to enlarge]

Heavy Rainfall in Southeast Texas

May 27th, 2016

GOES-13 Infrared Window (10.7 µm) images [click to play animation]

GOES-13 Infrared Window (10.7 µm) images [click to play animation]

4-km resolution GOES-13 (GOES-East) Infrared Window (10.7 µm) images (above) showed the cold cloud tops associated with training and back-building thunderstorms that produced very heavy rainfall (along with some hail and damaging winds) in parts of Southeast Texas during the 26 May27 May 2016 period. The images are centered on Brenham, Texas (station identifies K11R), where over 19 inches of rainfall was reported in a 24-hour period (NWS Houston PNS). Note the presence of very cold cloud-top IR brightness temperatures of -80º C or colder (violet color enhancement).

During the overnight hours, a comparison of Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0801 UTC or 3:01 am local time (below) revealed cloud-top gravity waves propagating northwestward away from the core of overshooting tops (which exhibited IR brightness temperatures as cold as -84º C) located just to the west of Brenham. Due to ample illumination from the Moon — which was in the Waning Gibbous phase, at 71% of Full — the “visible image at night” capability of the VIIRS Day/Night Band (DNB) was well-demonstrated. The bright white streaks seen on the DNB image are a signature of cloud-top illumination by intense lightning activity.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A time series plot of surface weather conditions at Brenham is shown below.

Time series plot of surface weather conditions at Brenham, Texas [click to enlarge]

Time series plot of surface weather conditions at Brenham, Texas [click to enlarge]

===== 28 May Update =====

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

A 30-meter resolution Landsat-8 false-color Red/Green/Blue (RGB) image viewed using the RealEarth web map server (above) showed widespread areas of inundation (darker shades of blue) along the Brazos River and some of its tributaries, just to the east and north of Brenham, Texas.

 

Fort McMurray, Alberta wildfire

May 3rd, 2016

GOES-15 0.63 um Visible (top) and 3.9 um Shortwave Infrared (bottom) images [click to play animation]

GOES-15 0.63 µm Visible (top) and 3.9 µm Shortwave Infrared (bottom) images [click to play animation]

GOES-15 (GOES-West) Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (above) showed the hot spot (dark black to yellow to red pixels) and the development of pulses of pyrocumulonimbus (pyroCb) clouds associated with a large wildfire located just to the west of Fort McMurray, Alberta (station identifier CYMM) on 03 May 2016. The fire — which started on 01 May (Wikipedia) — caused a mandatory evacuation of the nearly 90,00 residents of the city (the largest fire-related evacuation in Alberta history). Note that the hourly surface plots indicated a temperature of 90º F (32.2º C) at 22-23 UTC — in fact, a new daily record high temperature of 32.6º C was set for Fort McMurray (time series plot of surface data).

The corresponding GOES-15 Visible (0.63 µm) and Infrared Window (10.7 µm) images (below) revealed cloud-top infrared brightness temperature values as cold as -58º C (darker red color enhancement) at 0030 and 0100 UTC on 04 May.

GOES-15 0.63 um Visible (top) and 10.7 um Infrared Window (bottom) images [click to play animation]

GOES-15 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play animation]

Suomi NPP VIIRS False-color RGB, Visible (0.64 um), Shortwave Infrared (3.74 um), and Infrared Window (11.45 um) images at 1834 UTC [click to enlarge]

Suomi NPP VIIRS False-color RGB, Visible (0.64 µm), Shortwave Infrared (3.74 µm), and Infrared Window (11.45 µm) images at 1834 UTC [click to enlarge]

A comparison of Suomi NPP VIIRS false-color “Snow vs cloud discrimination” Red/Green/Blue (RGB), Visible (0.64 µm), Shortwave Infrared (3.74 µm), and Infrared Window (11.45 µm) images at 1834 UTC (above) showed that while a large fire hot spot was apparent on the Shortwave Infrared image, there was no clear indication of any pyrocumulus cloud development at that time. However, a similar image comparison at 2018 UTC (below) revealed that a well-defined pyroCb cloud had formed (with a cloud-top infrared brightness temperature as cold as -60º C, dark red color enhancement) which was drifting just to the north of the Fort McMurray airport (whose cyan surface report is plotted near the center of the images). A 2104 UTC NOAA-19 AVHRR image provided by René Servranckx showed a minimum IR brightness temperature of -59.6º C.

Suomi NPP VIIRS false-color RGB, Visible (0.64 um), Shortwave Infrared (3.74 um), and Infrared Window (11.45 um) images at 2018 UTC [click to enlarge]

Suomi NPP VIIRS false-color RGB, Visible (0.64 µm), Shortwave Infrared (3.74 µm), and Infrared Window (11.45 µm) images at 2018 UTC [click to enlarge]

A closer look using Suomi NPP VIIRS true-color RGB and Shortwave Infrared (3.74 µm) images from the SSEC RealEarth site (below) showed the initial pyroCb cloud as it had drifted just east of Fort McMurray, with the early stages of a second pyroCb cloud just south of the city.

Suomi NPP VIIRS true-color RGB and Shortwave Infrared (3.74 um) images [click to enlarge]


Suomi NPP VIIRS true-color RGB and Shortwave Infrared (3.74 µm) images [click to enlarge]

A nighttime comparison of Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 1015 UTC or 3:15 am local time (below; courtesy of William Straka, SSEC) showed the bright glow of the large Fort McMurray wildfire, as well as the lights associated with the nearby oil shale mining activity.

Suomi NPP VIIRS Day/Night Band (0.7 um) and Shortwave Infrared (3.74 um) images at 1014 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 1014 UTC [click to enlarge]

A sequence of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images covering the 02 April – 04 April period (below) showed the diurnal changes as well as the overall growth of the fire hot spot (darker black pixels).

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to enlarge]

===== 05 May Update =====

The GOES-14 satellite was operating in Super Rapid Scan Operations for GOES-R (SRSOR) mode, providing images at 1-minute intervals — and the scan sector was positioned to monitor the Fort McMurray wildfire on 05 May. GOES-14 Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (below; also available as a large 133 Mbyte animated GIF) showed the growth of the smoke plume and fire hot spot signature (black to yellow to red pixels).

GOES-14 0.63 µm Visible (top) and 3.9 µm Shortwave Infrared (bottom) images [click to play MP4 animation]

GOES-14 0.63 µm Visible (top) and 3.9 µm Shortwave Infrared (bottom) images [click to play MP4 animation]


A 30-meter resolution Landsat-8 false-color Red/Green/Blue (RGB) image (below) showed the size of part of the fire burn scar (darker brown) as well as the active fires (bright pink) along the perimeter of the burn scar.

Landsat-8 false-color image [click to enlarge]

Landsat-8 false-color image [click to enlarge]

===== 06 May Update =====

The Fort McMurray fire continued to produce a great deal of smoke on 06 May, and the coverage and intensity of fire hot spots increased during the afternoon hours as seen on 1-minute GOES-14 Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (below; also available as a large 180 Mbyte animated GIF).

GOES-14 0.63 µm (top) and 3.9 µm Shortwave Infrared (bottom) images [click to play MP4 animation]

GOES-14 0.63 µm (top) and 3.9 µm Shortwave Infrared (bottom) images [click to play MP4 animation]

===== 13 May Update =====

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A comparison of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images at 0906 UTC or 3:06 am local time (above) showed the fire hot spots (dark gray to yellow to red pixels) and their nighttime glow.

A time series of VIIRS Shortwave Infrared (3.74 µm) images covering the 04-13 May period (below) revealed the rapid early growth of the fire, and the continued slow spread of the fire periphery toward the Alberta/Saskatchewan border. On 13 May the total size of the area burned by the Fort McMurray fire was estimated to be 241,000 hectares or 595,524 acres.

Time series of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images, covering the 04-13 May period [click to enlarge]

Time series of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images, covering the 04-13 May period [click to enlarge]

===== 16 May Update =====

GOES-15 0.63 µm Visible (left) and 3.9 µm shortwave Infrared (right images [click to play animation]

GOES-15 0.63 µm Visible (left) and 3.9 µm shortwave Infrared (right images [click to play animation]

Strong southerly winds ahead of an approaching trough axis (surface analyses) created favorable conditions for rapid fire growth on 16 May — GOES-15 Visible (0.63 µm) and Shortwave Infrared (3.74 µm) images (above) showed the development of pyrocumulus clouds (first on the far western flank of the fire around 1930 UTC, then later in the eastern portion of the fire area). This new flare-up of fire activity prompted additional evacuations of some oil sands work camps and facilities north of Fort McMurray.

A comparison of Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images at 1932 UTC (below) showed that a small pyroCb had developed, which exhibited a cloud-top IR brightness temperature of -41.48 C.

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm), and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm), and Infrared Window (11.45 µm) images [click to enlarge]

A toggle between the corresponding VIIRS true-color RGB image and Shortwave Infrared images is shown below.

Suomi NPP VIIRS true-color RGB and Shortwave Infrared (3.74 µm) images [click to enlarge]

Suomi NPP VIIRS true-color RGB and Shortwave Infrared (3.74 µm) images [click to enlarge]

A time series plot of surface weather conditions for Fort McMurray (below) shows that during prolonged periods of light winds, the surface visibility dropped below 1 mile at times. The air quality at Fort McMurray was rated as “extreme“, and deemed unsafe for residents to return to the city.

Time series of weather conditions at Fort McMurray on 16 May [click to enlarge]

Time series of weather conditions at Fort McMurray on 16 May [click to enlarge]

===== 17 May Update =====

GOES-15 0.63 µm Visible (left) and 3.9 µm Shortwave Infrared (right) images [click to play animation]

GOES-15 0.63 µm Visible (left) and 3.9 µm Shortwave Infrared (right) images [click to play animation]

A shift to westerly winds followed the passage of a surface trough axis on 17 May (surface analyses), which slowed the northward progress of the fire. GOES-15 Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (above; also available as an MP4 animation) continued to show a great deal of thick smoke over the region, with hot spots from active fires.

However, during the afternoon hours multiple pyroCb clouds were seen to develop along the eastern flank of the fire. A comparison of Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images at 2054 UTC (below) revealed the pyroCb clouds, which exhibited cloud-top IR Window brightness temperatures as cold as -57º C (darker orange color enhancement).

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 m) and Infrared Window (11.45 ) images [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 m) and Infrared Window (11.45 ) images [click to enlarge]

A comparison of GOES-15 Shortwave Infrared (3.9 µm) and Infrared Window (10.7 µm) images (below; also available as an MP4 animation) showed the development of the pyroCb clouds around 2000 UTC, whose anvil debris moved rapidly southeastward; these pyroCb clouds exhibited a darker gray appearance on the shortwave IR images, along with cloud-top IR Window brightness temperatures as cold as -52º C (light orange color enhancement). Lightning strikes were detected during the early stages of pyroCb growth.

GOES-15 3.9 µm Shortwave Infrared (left) and 10.7 µm Infrared Window (right) images [click to play animation]

GOES-15 3.9 µm Shortwave Infrared (left) and 10.7 µm Infrared Window (right) images [click to play animation]

===== 18 May Update =====

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images covering the 04-18 May 2016 period [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images covering the 04-18 May 2016 period [click to enlarge]

Daily Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images covering the period 04 May to 18 May 2016 are shown above. The rapid growth of the perimeter of fire hot spots (yellow to red color enhancement) is quite evident during the first few days; patches of thick cloud cover tended to mask the fire hot spots during the middle of the period, but then another increase in hot spot growth is seen beginning on 16 May.