Carr Fire in northern California

August 11th, 2018 |
GOES-15, GOES-14, GOES-17 and GOES-16 Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

GOES-15, GOES-14, GOES-17 and GOES-16 Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

* GOES-17 images shown here are preliminary and non=operational *

A comparison of GOES-15 (GOES-West), GOES-14, GOES-17 and GOES-16 (GOES-East) Shortwave Infrared (3.9 µm) images (above) showed the thermal anomaly or “hot spot” (dark black to red pixels) associated with the Carr Fire in northern California on 11 August 2018. A GOES-16 Mesoscale Domain Sector was providing images at 1-minute intervals. This comparison demonstrates how fire detection can be affected by both satellite viewing angle and shortwave infrared detector spatial resolution (4 km at satellite sub-point for the GOES-14/15 Imager, vs 2 km for the GOES-16/17 ABI).

A toggle between 30-meter resolution Landsat-8 False Color and Thermal Infrared (10.9 µm) imagery viewed using RealEarth (below) showed new fire activity (clusters of red pixels) along the northeastern edge of the Carr Fire burn scar on the False Color image, as well as smoke plumes drifting northeastward; the heat signatures (brighter white pixels) of smaller fires hidden by the smoke were more clearly ssen on the Thermal Infrared image. As of this date the Carr Fire was the 8th largest and 6th most destructive fire on record in California, and was responsible for 8 fatalities.

Landsat-8 False Color and Thermal Infrared (10.9 µm) images [click to enlarge]

Landsat-8 False Color and Thermal Infrared (10.9 µm) images [click to enlarge]

Holy Fire in southern California, as viewed by 4 GOES

August 9th, 2018 |
Shortwave Infrared (3.9 µm) images from GOES-15, GOES-14, GOES-17 and GOES-16 [click to play MP4 animation]

Shortwave Infrared (3.9 µm) images from GOES-15, GOES-14, GOES-17 and GOES-16 [click to play MP4 animation]

 * GOES-17 images shown here are preliminary and non-operational *

GOES-15 (GOES-West), GOES-14, GOES-17 and GOES-16 (GOES-East) Shortwave Infrared (3.9 µm) images (above) showed the thermal anomaly or “hot spot” (black to yellow to red pixels) associated with the Holy Fire that was burning in southern California on 09 August 2018. This comparison demonstrates how fire detection can be affected by both satellite viewing angle and shortwave infrared detector spatial resolution (4 km at satellite sub-point for the GOES-14/15 Imager, vs 2 km for the GOES-16/17 ABI).

On the previous day, a 30-meter resolution Landsat-8 False Color Red-Green-Blue (RGB) image visualized using RealEarth (below) provided a more detailed view of the Holy Fire, showing active fires (brighter red) around the northern and eastern perimeter of the burn scar and the smoke plume that was drifting to the north and northwest.

Landsat-8 False Color image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

Smoke from Mendocino Complex fires in California

August 4th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images, with hourly plots of surface observations [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above) showed the smoke and thermal anomalies or “hot spots” (red pixels) associated with the Mendocino Complex burning in Northern California on 04 August 2018. Smoke was reducing the surface visibility to 2.5 miles at nearby Sacramento International Airport KSMF and Marysville KMYV. As of 7pm local time on 04 August the Mendocino Complex had burned 229,000 acres.

A 30-meter resolution Landsat-8 False Color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed active burning along the eastern edge of the Ranch Fire (part of the Mendocino Complex) at 1845 UTC. The larger fire was producing a pyrocumulus cloud in addition to the dense smoke plume drifting northeastward.

Landsat-8 False Color image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

GOES-16 Upper-level (6.2 µm), Mid-level (6.9 µm) and Low-level (7.3 µm) Water Vapor images (below) revealed a southwest-to-northeast oriented band of moisture and fast flow associated with a middle to upper-tropospheric jet streak that was moving over the region (300 hPa analyses). “Red” Visible (0.64 µm) images showed the smoke plume drifting rapidly northeastward over California and Nevada, and visible Derived Motion Winds — which are calculated for pressure levels at and below 700 hPa —  tracked the smoke moving as fast as 58 knots at 2337 UTC. This speed was faster than 00 UTC winds at or below 700 hPa on rawinsonde data from either Oakland KOAK or Reno KREV.

GOES-16 Upper-level (6.2 µm, top left), Mid-level (6.9 µm, top right), Low-level (7.3 µm, bottom left) Water Vapor and "Red" Visible with Derived Motion Winds (0.64 µm, bottom right) [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm, top left), Mid-level (6.9 µm, top right), Low-level (7.3 µm, bottom left) Water Vapor images and “Red” Visible (0.64 µm, bottom right) images with Derived Motion Winds [click to play MP4 animation]

===== 07 August Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 µm and 2.25 µm) and Shortwave Infrared (3.75 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 µm and 2.25 µm) and Shortwave Infrared (3.75 µm) images [click to enlarge]

A comparison of NOAA-20 VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 µm and 2.25 µm) and Shortwave Infrared (3.75 µm) images (above; courtesy of William Straka, CIMSS) showed the nighttime glow and thermal signatures of the Mendocino Complex fires on 07 August 2018. As of 8:30am the fire had burned over 290,000 acres, becoming the largest wildfire on record in the state of California.

 

Carr Fire pyrocumulonimbus in California

July 27th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above) showed the large thermal anomaly or “hot spot” (cluster of red pixels) associated with the Carr Fire in northern California as it produced a pyrocumulonimbus (pyroCb) cloud during the afternoon hours on 27 July 2018. A 30-meter resolution Landsat-8 False Color image from the previous day showed the large size of the burn scar; extreme fire behavior on 27 July caused the Carr Fire to quickly increase in size and move closer to Redding CA, and also produce the pyroCb.

Another view using GOES-16 “Red” Visible, Shortwave Infrared, “Clean” Infrared Window (10.3 µm) and the Cloud Top Temperature product (below) showed the pyroCb cloud as it drifted rapidly northeast over Nevada and Oregon, along with a second (albeit smaller) pyroCb cloud which developed around 0130 UTC. One standard parameter used for defining a pyroCb cloud is a minimum cloud-top longwave infrared brightness temperature of -40ºC (ensuring complete glaciation) — and in this case with 1-minute imagery, the multi-spectral Cloud Top Temperature (CTT) product (FAQ) indicated that the pyroCb cloud reached the -40ºC threshold 19 minutes earlier than the 10.3 µm infrared imagery. From that point forward, the CTT product was consistently at least 5-10ºC colder than the 10.3 µm brightness temperature; the CTT product eventually displayed a minimum value of -53.9ºC over northeastern California. Even as the 10.3 µm brightness temperature began to rapidly warm after about 0100 UTC, the CTT product continued to display values in the -45 to -50ºC range (shades of green) which allowed for unambiguous tracking of the pyroCb.

GOES-16 "Red" Visible (0.64 µm, top left), Shortwave Infrared (3.9 µm, top right), "Clean" Infrared Window (10.3 µm, bottom left) and Cloud Top Temperature product (bottom right) [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm, top left), Shortwave Infrared (3.9 µm, top right), “Clean” Infrared Window (10.3 µm, bottom left) and Cloud Top Temperature product (bottom right) [click to play MP4 animation]

In the case of the second (smaller) pyroCb cloud that formed from the Carr Fire after 0130 UTC, the 10.3 µm brightness temperature failed to reach the -40ºC threshold, while the CTT product again displayed values in the -45 to -50ºC range. The coldest CTT value of -53.9ºC (seen with the initial pyroCb) roughly corresponded to an altitude of 12.5 km or 41,000 feet according to 00 UTC rawinsonde data from Reno, Nevada (below). Strong upper-tropospheric winds of 80-90 knots rapidly transported the pyroCb anvil northeastward.

Plot of 00 UTC rawinsonde data from Reno, Nevada [click to enlarge]

Plot of 00 UTC rawinsonde data from Reno, Nevada [click to enlarge]