Cyclone Debbie makes landfall in Queensland, Australia

March 28th, 2017 |

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [click to play animation]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [click to play animation]

Cyclone Debbie formed in the Coral Sea on 22 March 2017, and eventually intensified to a Category 3 storm (ADT | SATCON) as it moved southward toward Australia. Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed the eye of Debbie as it was making landfall in Queensland, near Prosperpine (YBPN).

Landsat-8 false-color, with Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [click to enlarge]

Landsat-8 false-color, with Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [click to enlarge]

The Landsat-8 satellite made an overpass of the eye at 2358 UTC (above), as a large convective burst had developed within the northern semicircle of the eyewall (which was also evident in the corresponding Himawari-8 Visible and Infrared Window images viewed using RealEarth).

Himawari-8 Infrared Window (10.4 µm) and GMI Microwave (85 GHZ) Images around 1430 UTC on 27 March [click to enlarge]

Himawari-8 Infrared Window (10.4 µm) and GMI Microwave (85 GHZ) Images around 1430 UTC on 27 March [click to enlarge]

Debbie was undergoing an eyewall replacement cycle as the storm center approached the coast — this was evident in Microwave (85 GHz) images from GMI at 1425 (above) and SSMIS at 2017 UTC (below) from the CIMSS Tropical Cyclones site.

Himawari-8 Infrared Window (10.4 µm) and DMSP-18 SSMIS Microwave (85 GHz) images around 2017 UTC on 27 March [click to enlarge]

Himawari-8 Infrared Window (10.4 µm) and DMSP-18 SSMIS Microwave (85 GHz) images around 2017 UTC on 27 March [click to enlarge]

The MIMIC Total Precipitable Water product (below; also available as an MP4 animation) showed copious tropical moisture associated with Cyclone Debbie, which led to rainfall accumulations as high as 780 mm (30.7 inches) — with rainfall rates up to 200 mm (7.9 inches) per hour — and record flooding along the coast from Brisbane to Lismore.

MIMIC Total Precipitable Water product [click to play animation]

MIMIC Total Precipitable Water product [click to play animation]

 

 

 

Portland, Oregon heavy snow event

January 11th, 2017 |

GOES-15 Infrared Window (10.7 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Infrared Window (10.7 µm) images, with hourly reports of surface weather type [click to play animation]

A surface low moving inland (3-hourly surface analyses) helped to produce widespread rain and snow across much of Oregon and southern Washington during the 10 January11 January 2017 period. 4-km resolution GOES-15 (GOES-West) Infrared images (above) and Water Vapor images (below) showed the development of a deformation band that helped to focus and prolong moderate to heavy snowfall over the Portland, Oregon area (accumulations | historical perspective). The GOES-15 images are centered at Portland International Airport (station identifier KPDX).

GOES-15 Water Vapor (6.5 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Water Vapor (6.5 µm) images, with hourly reports of surface weather type [click to play animation]

1-km resolution GOES-15 Visible (0.63 µm) images (below) during the last few hours of daylight on 10 January revealed the shadowing and textured signature of numerous embedded convective elements moving inland, which were helping to enhance precipitation rates (and even produce thundersnow at a few locations, a phenomenon which is very unusual for the Pacific Northwest).

GOES-15 Visible (0.63 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Visible (0.63 µm) images, with hourly reports of surface weather type [click to play animation]

===== 12 January Update =====

As clouds cleared in the wake of the storm, a comparison of 375-meter resolution Suomi NPP VIIRS true-color and false-color Red/Green/Blue (RGB) images viewed using RealEarth (below) revealed the extent of the snow cover; snow appears as shades of cyan in the false-color image, in contrast to clouds which appear as shades of white. [Note: with 5 inches of snow remaining on the ground, a new record low temperature was set in Portland on 13 January]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

The fresh snowfall was also apparent in a 30-meter resolution Landsat-8 false-color RGB image (below) along the south face of Mount Hood (located about 98 miles or 158 km east of Portland). The ski slopes of Timberline Lodge and  Mount Hood Meadows received 13-14 inches of new snow during this event; the snow base depth at Timberline was greater than the average amount for this time of year.

Landsat-8 false-color RGB image [click to play zoom-in animation]

Landsat-8 false-color RGB image [click to play zoom-in animation]

Detection of River Flooding in Alaska

August 31st, 2016 |
Google Maps of west central Alaska, the JPSS River Flood Product and Landsat-8 False Color Imagery, 30 August 2016 [click to enlarge]

Google Maps of west central Alaska, the JPSS River Flood Product and Landsat-8 False Color Imagery, 30 August 2016 [click to enlarge]

Swampy conditions near the meandering Innoko River, a tributary to the Yukon River in Alaska, have been diagnosed by the JPSS River Flood Product near the Innoko’s mouth on the Yukon. (August has been very wet over parts of Alaska) A timely Landsat-8 overpass, in clear skies, on 30 August 2016 allows for excellent validation of the Flood Product. The animation above (using Images from RealEarth) cycles between the Google Maps terrain and satellite views of the region, the JPSS Flood Product (developed by a group led by Sanmei Li at George Mason University, which product uses reflective channels on JPSS (I01, I02, and I03, 0.64 µm, 0.86 µm and 1.61 µm, respectively) and I05, the 11.45 µm channel) and the Landsat-8 False Color overpass. Diagnosed floods in the JPSS Product are distinctly captured in the Landsat-8 False Color product.

Localized heavy rainfall and flooding in south-central Wisconsin

June 15th, 2016 |

GOES-13 Infrared Window (10.7 µm) images [click to play animation]

GOES-13 Infrared Window (10.7 µm) images [click to play animation]

GOES-13 Infrared Window (10.7 µm) images (above) showed the development of several rounds of deep convection which moved over parts of southern Wisconsin during the 14 June15 June 2016 period; these storms were responsible for heavy rainfall at some locations (NWS Milwaukee summary). As mentioned in a WPC Mesoscale Precipitation Discussion, some of these storms were focused along the nose of a low-level jet that was helping to push a warm frontal boundary (surface analyses) through the region. Moisture was also abundant south of the warm front, with a total precipitable water value of 55.1 mm (2.17 inches) seen in rawinsonde data from Davenport IA.

Landsat-8 false-color image [click to enlarge]

Landsat-8 false-color image [click to enlarge]

A timely cloud-free overpass of the Landsat-8 satellite on the morning of 15 June provided a 30-meter resolution false-color image as viewed using RealEarth (above), which showed areas of flooding — water appears as darker shades of blue — in the Black Earth area of western Dane County in southern Wisconsin. A before/after comparison of Landsat-8 images processed using an equation to highlight water as blue (below, courtesy of Shane Hubbard, SSEC/CIMSS) revealed the areas of inundation due to the 14-15 June thunderstorms.

Landsat-8 derived water change, 30 May vs 15 June 2016 [click to enlarge]

Landsat-8 derived water change, 30 May vs 15 June 2016 [click to enlarge]

Aerial footage from a drone flight (below) showed vivid images of the flooding along Black Earth Creek.

YouTube video from drone flight near Black Earth, Wisconsin [click to play]

YouTube video from drone flight near Black Earth, Wisconsin [click to play]