Fatal severe weather outbreak in Oklahoma

March 25th, 2015
GOES-13 0.63 µm visible channel images (click to play animation)

GOES-13 0.63 µm visible channel images (click to play animation)

Severe thunderstorms developed in the vicinity of a quasi-stationary frontal boundary which stretched from northeastern Oklahoma into northern Arkansas and southern Missouri late in the day on 25 March 2015. A plot of the SPC storm reports shows that these storms produced widespread large hail, damaging winds, and tornadoes —  including the first tornado-related fatality of 2015 at a trailer home park near Sand Springs, Oklahoma (just west/southwest of Tulsa). Storm reports also included hail as large as 4.25 inches in diameter, and wind gusts as high as 80 mph. 1-km resolution GOES-13 (GOES-East) 0.63 µm visible channel images (above; click image to play animation) showed the development of numerous thunderstorms across the region, some of which grew to be very large discrete supercells late in the afternoon and toward sunset. The tell-tale signature of cloud-top shadows from small-scale “overshooting tops” could be seen with many of these storms, indicating the presence of vigorous updrafts which penetrated the thunderstorm top (and likely the tropopause).

The corresponding 4-km resolution GOES-13 10.7 µm IR channel images (below; click image to play animation) revealed very cold cloud-top IR brightness temperatures (as cold as -71º C, dark black color enhancement), along with the formation of a well-defined Enhanced-V/Thermal Couplet (EV/TC) signature with the storm that produced large hail, damaging winds, and the fatal tornado southwest of Tulsa (station identifier KTUL). The EV/TC signature was first evident on the 22:00 UTC IR image, with cold/warm thermal couplet values of -65º/-53º C; the maximum thermal couplet spread was at 22:25 UTC, with -71º/-52º C, after which time the minimum IR brightness temperatures of the overshooting tops then began a warming trend: -67º C at 22:30 UTC, and -64º C at 22:37 UTC (suggesting a collapse of the vigorous updraft and overshooting top). Note that the storm-top EV/TC signature was displaced to the northwest of the surface hail/wind/tornado storm reports just west of Tulsa, due to parallax resulting from the large satellite viewing angle of GOES-East (which is positioned over the Equator at 75º W longitude). In addition, see the bottom of this blog post for examples of the NOAA/CIMSS ProbSevere product applied to these storms.

GOES-13 10.7 µm IR channel images (click to play animation)

GOES-13 10.7 µm IR channel images (click to play animation)

Automated overshooting top (OT) detection icons (small yellow thunderstorm symbols) are also plotted on the GOES-13 IR images. The initial OT detections began at 20:15 UTC, over the general area where there was later a report of 1.0-inch diameter hail at 20:40 UTC. A comparison of the 4-km resolution GOES-13 10.7 µm IR image at 20:15 UTC with a 375-meter (projected onto a 1-km AWIPS grid) Suomi NPP VIIRS 11.45 µm IR image at 20:16 UTC (below) demonstrates (1) the advantage of improved spatial resolution for detecting the minimum cloud-top IR brightness temperature of thunderstorm overshooting tops (-60º C with GOES, vs -75º C with VIIRS), and (2) minimal parallax effect with polar-orbiting satellite imagery such as that from Suomi NPP, for more accurate geolocation of such potentially important storm features.

GOES-13 10.7 µm IR and Suomi NPP VIIRS 11.45 µm IR channel images

GOES-13 10.7 µm IR and Suomi NPP VIIRS 11.45 µm IR channel images

A comparison of 1-km resolution POES AVHRR 0.86 µm visible channel and 12.0 µm IR channel images (below) provided a detailed view of the storms at 22:54 UTC, which were electrically very active at that time (producing over 1900 cloud-to-ground lightning strikes in a 15-minute period). The coldest cloud-top IR brightness temperature was -77º C, located just southwest of Tulsa — this was likely the overshooting top associated with the supercell thunderstorm that produced the fatal tornado.

POES AVHRR 12.0 µm IR channel and 0.86 µm visible channel images, with METAR surface reports, lightning, and SPC storm reports

POES AVHRR 12.0 µm IR channel and 0.86 µm visible channel images, with METAR surface reports, lightning, and SPC storm reports

10-km resolution GOES-13 sounder Convective Available Potential Energy (CAPE) derived product images (below; click image to play animation) showed the rapid trend in destabilization of the air mass along and south of the frontal boundary, with CAPE values eventually exceeding 4300 J/kg (purple color enhancement).

GOES-13 sounder Convective Available Potential Energy (CAPE) derived product images (click to play animaton)

GOES-13 sounder Convective Available Potential Energy (CAPE) derived product images (click to play animaton)

10-km resolution GOES-13 sounder Total Precipitable Water (TPW) derived product images (below; click image to play animation) indicated that TPW values of 30 mm or 1.18 inch and greater (yellow enhancement) were present along and south the frontal boundary in northeastern Oklahoma.

GOES-13 sounder Total Precipitable Water derived product imagery (click to play animation)

GOES-13 sounder Total Precipitable Water derived product imagery (click to play animation)

At 19:19 UTC, the 4-km resolution MODIS Total Precipitable Water derived product image (below) showed a plume of moisture with TPW values as high as 41.7 mm or 1.64 inches (red enhancement) moving toward the Tulsa area.

MODIS 0.65 um visible channel and Total Precipitable Water derived product images

MODIS 0.65 um visible channel and Total Precipitable Water derived product images

Additional information about this event can be found at the NWS Tulsa and United States Tornadoes sites.

Convection Returns to the central Great Plains

March 24th, 2015
Suomi NPP VIIRS 11.45 µm infrared channel images (click to enlarge)

Suomi NPP VIIRS 11.45 µm infrared channel images (click to enlarge)

The ongoing change in seasons was accompanied last night by a round of convection over the Missouri River Valley. Suomi NPP 11.45 µm imagery from overnight shows scattered convection over Kansas, Missouri and Iowa at 0728 and 0909 UTC. Coldest cloud tops are around -65 C. The Day-Night band showed lightning streaks at both times as well, over east-central Kansas at 0728 and north-central Kansas 0909 UTC.

Suomi NPP VIIRS 0.70 µm Day-Night band visible channel images (click to enlarge)

Suomi NPP VIIRS 0.70 µm Day-Night band visible channel images (click to enlarge)

GOES Sounder DPI Lifted Index, times as indicated (click to enlarge)

GOES Sounder DPI Lifted Index, times as indicated (click to enlarge)

The GOES Sounder showed the unstable air that was feeding into this convection. Imagery at three-hourly intervals, above, shows values between 0 and -4 persisting over the central Plains. Plots of 850-mb data on top of the GOES Sounder DPI Lifted index, below, shows the development of strong warm advection over the central Plains that helped feed moisture into the developing convection.

GOES Sounder DPI Lifted Index and Radiosonde data at 850 hPa, times as indicated (click to enlarge)

GOES Sounder DPI Lifted Index and Radiosonde data at 850 hPa (click to enlarge)

NUCAPS soundings, created from both CrIS and ATMS data on board Suomi NPP, below, showed steepening mid-level lapse rates over/near Kansas. This convection likely was not surface-based.

Suomi/NPP NUCAPS Soundings near Kansas City (07z) and over Eastern Kansas (09z) with an individual sounding from the starred point plotted (click to enlarge)

Suomi/NPP NUCAPS Soundings near Kansas City (07z) and over Eastern Kansas (09z) with an individual sounding from the starred point plotted (click to enlarge)

Strong arctic cold front: grass fires, blowing dust, and a lee-side frontal gravity wave

March 17th, 2015
GOES-13 3.9 µm shortwave IR channel images (click to play animation)

GOES-13 3.9 µm shortwave IR channel images (click to play animation)

After a day of record high temperatures in parts of Nebraska — the 91º F at North Platte set a new record high for the month of March, and was also the earliest temperature of 90º F or above on record at that site — a strong arctic cold front plunged southward across the state late in the day on 16 March 2015. With strong winds (gusting to 40-50 knots at some locations) in the wake of the frontal passage and dry vegetation fuels in place, GOES-13 3.9 µm shortwave IR images (above; click image to play animation) showed the “hot spot” signatures (black to yellow to red pixels) associated with a number of large grass fires that began to burn across the state.

The strong northwesterly winds behind the cold front also lofted dry soil into the boundary layer, creating blowing dust whose hazy signature was evident on GOES-13 0.63 visible channel images (below; click image to play animation). Visibility was reduced to 7 miles at some locations.

GOES-13 0.63 µm visible channel images (click to play animation)

GOES-13 0.63 µm visible channel images (click to play animation)

After sunset and into the pre-dawn hours on 17 March, a lee-side frontal gravity wave signature could be seen on GOES-13 6.5 µm water vapor channel images (below; click image to play animation). This warmer/drier (darker blue color enhancement) arc on the water vapor imagery followed the position of the surface cold front, which meant that the upward-propagating frontal gravity wave reached altitudes where the water vapor channel was sensing radiation.

GOES-13 6.5 µm water vapor channel images (click to play animation)

GOES-13 6.5 µm water vapor channel images (click to play animation)

As the frontal gravity wave was approaching the Kansas/Oklahoma border region around 05 UTC, a pilot reported light to moderate turbulence at altitude of 6000 feet (below).

GOES-13 6.5 µm water vapor channel image with pilot report of turbulence

GOES-13 6.5 µm water vapor channel image with pilot report of turbulence

A 4-panel comparison of the three Sounder water vapor channels (6.5 µm, 7.0 µm, and 7.4 µm) and the standard Imager 6.5 µm water vapor channel (below; click image to play animation) showed that the southward propagation of the frontal gravity wave signature was most evident on the Sounder 7.0 µm and Imager 6.5 µm images, although there was also a more subtle indication on the Sounder 7.4 µm images. The new generation of geostationary satellite Imager instruments (for example, the AHI on Himawari-8 and the ABI on GOES-R) feature 3 water vapor channels which are similar to those on the current GOES Sounder, but at much higher spatial and temporal resolutions

GOES-13 Sounder 6.5 µm (upper left), 7.0 µm (upper right), 7.4 µm (lower left), and Imager 6.5 µm (lower right) - click to play animation

GOES-13 Sounder 6.5 µm (upper left), 7.0 µm (upper right), 7.4 µm (lower left), and Imager 6.5 µm (lower right) – click to play animation

————————————————————————-

GOES-13 Sounder and Imager water vapor channel weighting functions for North Platte, Nebraska

GOES-13 Sounder and Imager water vapor channel weighting functions for North Platte, Nebraska

The depth and altitude of the layer from which a particular water vapor channel is detecting radiation is shown by plotting its weighting function — for example, at North Platte, Nebraska (above), the Imager 6.5 µm plot (black) and the 7.0 µm plot (green) exhibited lower-altitude secondary peaks around the 500 hPa level — while farther to the south at Dodge City, Kansas (below) these 2 water vapor channel plots had their peaks located slightly higher in the atmosphere. Even though the bulk of the radiation was being detected from higher altitudes (due to the presence of moisture and cirrus clouds aloft over much of the southern Plains region), the sharp signal of the lower-altitude cold frontal gravity wave was strong enough to be seen in the deep layer average moisture brightness temperature depicted in the water vapor images.

GOES-13 Sounder and Imager water vapor channel weighting functions

GOES-13 Sounder and Imager water vapor channel weighting functions

Great Lakes surface geographical outlines evident on water vapor imagery

February 23rd, 2015
GOES-13 6.5 µm water vapor channel images (click to play animation)

GOES-13 6.5 µm water vapor channel images (click to play animation)

A cold and dry arctic air mass (morning minimum temperatures) was in place over the Great Lakes region on 23 February 2015. This arctic air mass was sufficiently cold and dry throughout the atmospheric column to allow the outlines of portions of the surface geography of the Great Lakes to be seen on GOES-13 (GOES-East) 6.5 µm water vapor channel images (above; click image to play animation).

In addition to the commonly-used 4-km resolution 6.5 µm water vapor channel on the GOES Imager instrument, there are also three 10-km resolution water vapor channels on the GOES Sounder instrument (centered at 6.5 µm, 7.0 µm, and 7.4 µm). A 4-panel comparison of these water vapor channel images (below; click image to play animation) provides the visual indication that each water vapor channel is sensing radiation from different layers at different altitudes — for example, the surface geographical outlines of the Great Lakes are best seen with the Sounder 7.4 µm (bottom left panels) and the Imager 6.5 µm (bottom right panels) water vapor channels.

GOES-13 Sounder 6.5 µm, 7.0 µm, 7.4 µm, and Imager 6.5 µm water vapor channel images (click to play animation)

GOES-13 Sounder 6.5 µm, 7.0 µm, 7.4 µm, and Imager 6.5 µm water vapor channel images (click to play animation)

An inspection of GOES Sounder and Imager water vapor channel weighting function plots (below) helps to diagnose the altitude and depth of the layers being sensed by each of the individual water vapor channels at a variety of locations. For example, the air mass over Green Bay, Wisconsin was cold and very dry (with a Total Precipitable Water value of 0.87 mm or 0.03 inch), which shifted the altitude of the various water vapor channel weighting functions to very low altitudes; this allowed surface radiation from the contrasting land/water boundaries to “bleed up” through what little water vapor was present in the atmosphere, and be sensed by the GOES-13 water vapor detectors. In contrast, the air mass farther to the south over Lincoln, Illinois was a bit more more moist, especially in the middle/upper troposphere (with a Total Precipitable Water value of 4.20 mm or 0.17 inch) — this shifted the altitude of the water vapor channel weighting functions to much higher altitudes (to heights that were closer to those calculated using a temperature/moisture profile based on the US Standard Atmosphere).

GOES-13 Sounder and Imager water vapor channel weighting function plots for Green Bay WI, Lincoln IL, and the US Standard Atmosphere

GOES-13 Sounder and Imager water vapor channel weighting function plots for Green Bay WI, Lincoln IL, and the US Standard Atmosphere

In addition to the temperature and/or moisture profile of the atmospheric column, the other factor which controls the altitude and depth of the layer(s) being detected by a specific water vapor channel is the satellite viewing angle (or “zenith angle”); a larger satellite viewing angle will shift the altitude of the weighting function to higher levels in the atmosphere. Recall that the water vapor channel is essentially an Infrared (IR) channel — it generally senses the mean temperature of a layer of moisture or clouds located within the middle to upper troposphere. In this case, the sharp thermal contrast between the cold land surfaces surrounding the warmer Great Lakes was able to be seen, due to the lack of sufficient water vapor at higher levels of the atmosphere to attenuate or block the surface thermal signature.

The new generation of geostationary satellite Imager instruments (for example, the AHI on Himawari-8 and the ABI on GOES-R) feature 3 water vapor channels which are similar to those on the current GOES Sounder, but at much higher spatial and temporal resolutions.

On a separate — but equally interesting — topic: successive intrusions of arctic air over the region allowed a rapid growth of ice in the waters of Lake Michigan. A 15-meter resolution Landsat-8 0.59 µm panochromatic visible image viewed using the SSEC RealEarth web map server (below) showed a very detailed picture of ice floes along the western portion of the lake, as well as a patch of land-fast ice in the far southern end of the lake.

Landsat-8 0.59 µm panochromatic visible image (click to enlarge)

Landsat-8 0.59 µm panochromatic visible image (click to enlarge)

The motion of the band of ice floes along the western  edge of Lake Michigan was evident in 1-km resolution GOES-13 0.63 µm visible channel images (below; click image to play animation) — along the east coast of Wisconsin, southwesterly winds gusting to around 20 knots were acting to move the ice floes away from the western shoreline of Lake Michigan.

GOES-13 0.63 µm visible channel images (click to play animation)

GOES-13 0.63 µm visible channel images (click to play animation)