Severe Thunderstorms over Northern Illinois

June 10th, 2015

GOES-14 Visible (0.6263 µm, top) and GOES-13 Visible (0.63 µm, bottom) imagery centered over Illinois, 10 June 2015 [Click to animate]

GOES-14 Visible (0.6263 µm, top) and GOES-13 Visible (0.63 µm, bottom) imagery centered over Illinois, 10 June 2015 [Click to animate]

GOES-14, in SRSO-R mode, captured the quick development of severe thunderstorms over northern Illinois late in the afternoon on 10 June 2015. Many of these storms produced large hail — especially in Will County and in Grundy County, where the second largest hailstone on record for the state of Illinois was measured (NWS Chicago summary). This event is also discussed on the GOES-R Hazardous Weather Testbed (HWT) Blog: before initiation, during convective initiation, lightning jumps and ProbSevere (first post, second post), and Overshooting top detection. The animation above compares GOES-14 SRSO-R imagery (top) with GOES-13 in Routine Scanning mode (until 2045 UTC) and in Rapid Scan Operations (RSO) mode after 2115 UTC on 10 June 2015 (a smaller version of this large animated gif is also available as an mp4).

The GOES-14 SRSO-R imagery depicts the convection evolving in a fluid atmosphere. Even the relatively fast GOES-13 RSO time-step cannot capture the full evolution and decay of overshooting tops.  On the 1-minute GOES-14 images, note the development of prominent cloud-top plumes which spread out southeastward away from the more robust overshooting top regions, and also cloud-top gravity waves which form along the southeastern flank of some of the larger thunderstorm anvils. Another advantage of SRSO-R compared to the routine scanning strategy using visible imagery is discussed here.

A wider-scale view of the evolution of the atmosphere on 10 June over the Upper Midwest is available here as a YouTube video, here as an mp4, and here as an animated gif image (warning: 300+ Megabyte file). A closer-scale view of the developing convection with GOES-14 visible images is available as an mp4 movie file, or on YouTube; an animation of GOES-14 10.7 µm IR images is available as an mp4 file.

POES AVHRR 12.0 µm IR channel image, with SPC storm reports of large hail and damaging winds

POES AVHRR 12.0 µm IR channel image, with SPC storm reports of large hail and damaging winds

The line of severe thunderstorms developed just ahead of a cold frontal boundary (animation) that was sagging southward and stalling across northern Illinois during the day on 10 June. About an hour before the 4.75-inch diameter hail was reported in Minooka IL (located about 12 miles southwest of Joliet, KJOT), a 1-km resolution POES AVHRR 12.0 µm IR image at 2316 UTC (above) showed that particular cluster of thunderstorms just southwest of the Chicago area around the time of initial hail report (1.25 inch diameter at 2318 UTC); less than a half hour later there was a report of 2.00 inch hail at 2345 UTC. Farther to the southwest, the larger thunderstorm complex was also producing hail and damaging winds, near and to the southwest of the region of coldest cloud-top IR brightness temperatures (-77º C) exhibited by the overshooting tops.

GOES-13 sounder Lifted Index derived product images [click to play animation]

GOES-13 sounder Lifted Index derived product images [click to play animation]

Hourly derived product images (DPI) of GOES-13 sounder Lifted Index (above) and Total Precipitable Water (below) revealed that a broad axis of instability and moisture existed across northern Illinois ahead of the approaching cold frontal boundary. Lifted Index values reached the -8º to -10º C range (red colors); Total Precipitable Water values were generally in the 40 to 50 mm or 1.6 to 2.0 inch range (red colors), with some locations as high as 53 mm or 2.1 inches (violet colors). The presence of this instability and moisture helped to create an environment favorable for the rapid growth of strong to severe convection.

GOES-13 sounder Total Precipitable Water derived product images [click to play animation]

GOES-13 sounder Total Precipitable Water derived product images [click to play animation]

GOES-14 SRSO-R Imagery over North Carolina

May 21st, 2015



 

GOES-14 0.62 µm visible imagery, above, (here as an mp4, and here as a very large (220+ megabytes) animated gif) shows the development of convection over eastern North Carolina in a region of slight risk according to SPC (below).

Day 1 Outlook for Convection from SPC, issued at 1300 UTC 21 May 2015 [click to enlarge]

Day 1 Outlook for Convection from SPC, issued at 1300 UTC 21 May 2015 [click to enlarge]

==================================================================================

Mesoscale Discussion #713 from SPC, below, referenced the Super-Rapid scan imagery:

MESOSCALE DISCUSSION 0713
NWS STORM PREDICTION CENTER NORMAN OK
1111 AM CDT THU MAY 21 2015

AREAS AFFECTED…E-CNTRL AND ERN NC / SC GRAND STRAND

CONCERNING…SEVERE POTENTIAL…WATCH POSSIBLE

VALID 211611Z – 211745Z

PROBABILITY OF WATCH ISSUANCE…60 PERCENT

SUMMARY…SCATTERED STORMS ARE FORECAST TO DEVELOP OVER THE NEXT FEW
HOURS. AN ISOLATED SEVERE THREAT WILL LIKELY DEVELOP AND A WATCH
WILL STRONGLY BE CONSIDERED.

DISCUSSION…SUBJECTIVE SURFACE MESOANALYSIS PLACES A LOW 30 MI W
SOP WITH A WEST-EAST ORIENTED WARM FRONT AND A TRAILING COLD FRONT
ACROSS THE SC PIEDMONT. A PREFRONTAL CONFLUENCE/SURFACE TROUGH
EXTENDS FROM THE LOW SEWD THROUGH THE GRAND STRAND VICINITY.
OBSERVATIONS TO THE E OF THE SURFACE TROUGH AND LOCATED WITHIN THE
WARM SECTOR SHOW TEMPS WARMING TO NEAR 80 DEG F WITH BOUNDARY LAYER
DEWPOINTS IN THE MID-UPPER 60S INLAND AND AROUND 70 NEAR THE COAST.
SUPER RAPIDSCAN VISIBLE IMAGERY SHOWS A BUILDING TCU FIELD
IMMEDIATELY E OF THE LOW AND ALONG THE PREFRONTAL TROUGH/CONFLUENCE
.

WATER VAPOR IMAGERY LATE THIS MORNING IMPLIES A WEAK LEAD
DISTURBANCE MOVING ACROSS W-CNTRL NC AHEAD OF THE MID MS VALLEY
SHORTWAVE TROUGH FORECAST TO APPROACH THE CNTRL APPALACHIANS LATER
TODAY. IT SEEMS THE WEAK UPPER FORCING FOR ASCENT PROVIDED BY THE
LEAD IMPULSE COUPLED WITH ADDITIONAL DIABATIC HEATING WILL ERODE THE
CAP OVER THE NEXT 1-2 HOURS AND SCATTERED STORM COVERAGE IS PROBABLE
BY THE 18-19Z TIMEFRAME.

VEERING AND A GRADUAL STRENGTHENING OF WINDS WITH HEIGHT WILL
SUPPORT STORM ORGANIZATION ONCE A FEW VIGOROUS UPDRAFTS BECOME
ESTABLISHED. FORECAST SOUNDINGS DEPICT MODERATE BUOYANCY AS OF 16Z
ACROSS THE WARM SECTOR AND THIS SHOULD FAVOR STORM INTENSIFICATION
OVER THE NEXT SEVERAL HOURS ONCE INITIATION COMMENCES. ISOLD LARGE
HAIL AND DMGG WINDS WILL BE THE PRIMARY THREATS. DESPITE TEMPERED
LOW-LEVEL SHEAR…A TORNADO MAY ALSO BE POSSIBLE ESPECIALLY IF A
SUPERCELL CAN DEVELOP AND FAVORABLY TRACK ALONG THE WARM FRONT.

..SMITH/THOMPSON.. 05/21/2015

ATTN…WFO…AKQ…MHX…RAH…ILM…CAE…

LAT…LON 35267979 36097844 36297643 35847549 34977597 33737851
33897960 34497991 35267979

==================================================================================

The GOES-13 Sounder captured some of the destabilization that occurred ahead of the developing line of convection. Values less than -5 are widespread over southeastern North Carolina at 1600 UTC, after which time cirrus blowoff obscured the satellite view.

GOES-13 Sounder DPI values of Lifted Index, 1600 UTC 21 May 2015 [click to enlarge]

GOES-13 Sounder DPI values of Lifted Index, 1600 UTC 21 May 2015 [click to enlarge]

Suomi NPP’s orbits on 21 May allowed successive views of the developing convection, once at 1725 UTC and once near 1905 UTC. The convection developed near the edge of the swath in both images, however, so NUCAPS soundings did not view the environment closest to the storms. Infrared imagery, below, shows the quick evolution of convection.

Suomi NPP VIIRS 11.45 µm infrared imagery and NUCAPS Sounding Points (in green), ~1730 and ~1900 UTC 21 May 2015 [click to enlarge]

Suomi NPP VIIRS 11.45 µm infrared imagery and NUCAPS Sounding Points (in green), ~1730 and ~1900 UTC 21 May 2015 [click to enlarge]

VIIRS visible (0.64 µm) and near-infrared (1.61 µm) imagery, below, shows that the developing storms glaciated quickly; the 1.61 µm imagery over the convection shows the darker grey values characteristic of regions where ice crystals are strongly absorbing radiation. Water-based clouds — over Kentucky, for example — appear as bright white in both channels.

Suomi NPP VIIRS 0.64 µm visible imagery and 1.61 µm near-infrared imagery 1903 UTC 21 May 2015 [click to enlarge]

Suomi NPP VIIRS 0.64 µm visible imagery and 1.61 µm near-infrared imagery 1903 UTC 21 May 2015 [click to enlarge]

Thunderstorms in Arizona

May 4th, 2015
GOES-13 10.7 µm IR images (click to play animation)

GOES-13 10.7 µm IR images (click to play animation)

4-km resolution GOES-13 (GOES-East) 10.7 µm IR channel images (above; click image to play animation) showed the development and northward propagation of clusters of thunderstorms across Arizona on 04 May 2015. The coldest cloud-top IR brightness temperature was -49º C (darker red color enhancement). As the storms later organized into a mesoscale convective system, cloud-to-ground lightning strikes were seen to exceed 100 per 15-minute period.

A higher resolution view could be seen in a comparison of Suomi NPP VIIRS 0.7 µm Day/Night Band (DNB) and 11.45 µm IR channel images at 0940 UTC or 2:40 AM local time (below). Since the Moon was in the Waning Gibbous phase at 99% of full, this served as a good example of the “visible image at night” capability of the VIIRS Day/Night Band.

Suomi NPP VIIRS 0.7 µm Day/Night Band and 11.45 µm IR images, with METAR surface reports and 1-hour cloud-to-ground lightning strikes

Suomi NPP VIIRS 0.7 µm Day/Night Band and 11.45 µm IR images, with METAR surface reports and 1-hour cloud-to-ground lightning strikes

One ingredient that aided in the thunderstorm development was rich moisture, as was noted in this excerpt from a NWS Phoenix forecast discussion:

AREA FORECAST DISCUSSION
NATIONAL WEATHER SERVICE PHOENIX AZ
840 AM MST MON MAY 4 2015

HOWEVER WHAT WAS NOT SO OBVIOUS…AND A MODEL FAILURE…WAS THE AMOUNT OF BOUNDARY LAYER MOISTURE ADVECTED INTO SOUTHERN AZ FROM MEXICO LATE YESTERDAY AFTERNOON AND NIGHT. JUST LOOK AT THIS MORNINGS TUCSON BALLOON SOUNDING. IT SHOWED AN 800 MB DEWPOINT OF 9 DEG C WHICH LOOKS MONSOONISH. IN OTHER WORDS THE BOUNDARY LAYER MOISTURE THROUGH 700 MB WAS IMPRESSIVE.

This northward transport of moisture could be seen on GOES-15 sounder Total Precipitatble Water (TPW) derived product images (below; click image to play animation); TPW values even exceeded 30 mm or 1.18 inches (yellow color enhancement) as early as 02 UTC on 04 May, reaching a peak of 33.4 mm or 1.3 inches at 04 UTC. A comparison of the Tucson rawinsonde data profiles from 12 UTC on 03 May and 00/12 UTC on 04 May can be seen here — TPW values at that location increased from 13.5 mm (0.53 inch) to 22.3 mm (0.88 inch) during that 24-hour period.

GOES-15 sounder Total Precipitable Water derived product images (click to play animation)

GOES-15 sounder Total Precipitable Water derived product images (click to play animation)

Later in the day on 04 May, as thunderstorms moved northward across the Interstate 40 corridor in northeastern Arizona, swaths of rain-cooled wet ground appeared as lighter-gray areas on the Aqua MODIS 11.0 µm IR image at 2008 UTC (below). These swaths of wet soil exhibited IR brightness temperatures that were as much as 10º C cooler than the adjacent dry soil surfaces which were heating up quickly during the early afternoon hours.

Terra (1828 UTC) and Aqua (2008 UTC) MODIS 11.0 µm IR images

Terra (1828 UTC) and Aqua (2008 UTC) MODIS 11.0 µm IR images

The corresponding 2008 UTC Aqua MODIS Land Surface Temperature (LST) product (below) made it easier to discriminate between the cooler swaths of wet ground (LST values between 70 and 85º F, shades of green) and the adjacent areas of dry soil (LST values as warm as 100-116º F, darker shades of orange).

Aqua MODIS Land Surface Temperature product

Aqua MODIS Land Surface Temperature product

Severe thunderstorms in the Midwest

April 9th, 2015
GOES-13 0.63 µm visible images, with Cloud-Top Cooling Rate, Overshooting Tops Detection, and SPC storm reports (click to play animation)

GOES-13 0.63 µm visible images, with Cloud-Top Cooling Rate, Overshooting Tops Detection, and SPC storm reports (click to play animation)

A deepening area of low pressure (21 UTC surface analysis) was moving northeastward across the Midwest region of the US on 09 April 2015; GOES-13 0.63 µm visible images combined with the Cloud-Top Cooling Rate and Overshooting Tops Detection products (above; click image to play animation) showed a line of severe thunderstorms which quickly developed along the associated cold frontal boundary as it moved eastward across Iowa and Missouri during the afternoon hours. Cloud-Top Cooling Rates with some of the storms in Missouri were in excess of 50º C per 15 minutes (violet color enhancement) during their early stage of development (18:25 UTC image).

A comparison of Suomi NPP VIIRS 0.64 µm visible channel and 11.45 µm IR channel images at 18:51 UTC or 1:51 PM local time (below) showed that the line of thunderstorms was beginning to produce a number of cloud-to-ground lightning strikes.

Suomi NPP VIIRS 11.45 µm IR channel image and 0.64 µm visible channel image with cloud-to-ground lightning strikes

Suomi NPP VIIRS 11.45 µm IR channel image and 0.64 µm visible channel image with cloud-to-ground lightning strikes

Focusing our attention on eastern Iowa and northern Illinois — where there were widespread reports of large hail, damaging winds, and tornadoes (SPC storm reports) — the organization of large, discrete supercell thunderstorms can be seen on GOES-13 0.63 µm visible channel images (below; click image to play animation), which exhibited numerous overshooting tops.

GOES-13 0.63 µm visible channel images, with SPC storm reports (click to play animation)

GOES-13 0.63 µm visible channel images, with SPC storm reports (click to play animation)

The corresponding GOES-13 10.7 µm IR channel images (below; click image to play animation) showed that the coldest cloud-top IR brightness temperatures were -67º C (darker black enhancement).

GOES-13 10.7 µm IR images, with Overshooting Top Detection and SPC storm reports (click to play animation)

GOES-13 10.7 µm IR images, with Overshooting Top Detection and SPC storm reports (click to play animation)

The NOAA/CIMSS ProbSevere product (below; click image to play animation) gauges the likelihood of a storm first producing severe weather (of any kind) within the next 60 minutes. It combines information about the environment (Most Unstable CAPE, Environmental Shear) from the Rapid Refresh Model, information about the growing cloud (Vertical Growth Rate as a percentage of the troposphere per minute and Glaciation Rate, also as a percentage per minute), and Maximum Expected Hail Size (MESH) from the MRMS. In this event, the ProbSevere product performed well for the storm that spawned the EF-4 tornado, although due to the cloudiness of the satellite scene the ProbSevere model was unable to diagnose vertical growth rate and glaciation rate (which diminished the potential lead-time). Below is a chronological timeline of events for that storm:

2308 UTC: first ProbSevere > 50%
2310 UTC: first ProbSevere > 70%
2311 UTC: NWS Severe T-Storm Warning
2312 UTC: ProbSevere = 88%
2323 UTC: 1.00″ hail 2 SE Dixson (15 min lead-time for ProbSevere@50, 13 min for ProbSevere@70, 12 min for NWS Svr Warning)
2335 UTC: NWS Tornado Warning (ProbSevere = 94%)
2340 UTC: Tornado report 2 NE Franklin Grove

Radar reflectivity with NOAA/CIMSS ProbSevere model contours and NWS warning polygons (click to play animation)

Radar reflectivity with NOAA/CIMSS ProbSevere model contours and NWS warning polygons (click to play animation)

In spite of widespread cloudiness, the GOES-13 Sounder single-field-of-view Lifted Index (LI), Convective Available Potential Energy (CAPE), and Total Precipitable Water (TPW) derived product images (below) were able to portray that the air mass in the warm sector of the low ahead of the strong cold front was was both unstable — LI values of -4 to -8º C (yellow to red color enhancement) and CAPE values of 3000-4000 J/kg (yellow to red color enhancement) — and rich in moisture, with TPW values of 30-40 mm or 1.2 to 1.6 inches (yellow to red color enhancement).

GOES-13 Sounder Lifted Index derived product images (click to play animation)

GOES-13 Sounder Lifted Index derived product images (click to play animation)

GOES-13 Sounder Lifted CAPE derived product images (click to play animation)

GOES-13 Sounder CAPE derived product images (click to play animation)

GOES-13 Sounder Total Precipatable Water (TPW) derived product images (click to play animation)

GOES-13 Sounder Total Precipatable Water (TPW) derived product images (click to play animation)

On the following day (10 April), it was cloud-free as the Landsat-8 satellite passed over northern Illinois at 16:41 UTC or 11:41 AM local time — and the 30.2 mile long southwest-to-northeast oriented tornado damage path that produced EF-4 damage and was responsible for 2 fatalities and 22 injuries (NWS Chicago event summary) was evident on 15-meter resolution Band 8 0.59 µm panchromatic visible images viewed using the SSEC RealEarth web map server (below). An aerial survey of part of the tornado damage path can be seen here.

Landsat-8 0.59 µm panchromatic visible image of southwestern portion of tornado damage track (click to enlarge)

Landsat-8 0.59 µm panchromatic visible image of southwestern portion of tornado damage track (click to enlarge)

Landsat-8 0.59 µm panchromatic visible image of northeastern portion of tornado damage path (click to enlarge)

Landsat-8 0.59 µm panchromatic visible image of northeastern portion of tornado damage path (click to enlarge)

A Landsat-8 false-color image (using Bands 6/5/4 as Red/Green/Blue) is shown below. The 2 tornado-related fatalities occurred in Fairdale.

Landsat-8 false-color image (using Bands 6/5/4 as R/G/B)

Landsat-8 false-color image (using Bands 6/5/4 as R/G/B)

On a side note, in the cold (northwestern) sector of the low it was cold enough for the precipitation type to be snow — and up to 4 inches of snow fell in western Iowa. GOES-13 0.63 µm visible channel images (below; click image to play animation) showed the swath of snow cover as it rapidly melted during the daytime hours on 10 April.

GOES-13 0.63 µm visible channel images (click to play animation)

GOES-13 0.63 µm visible channel images (click to play animation)

In fact, the swath of snow cover across eastern Nebraska and western/northern Iowa was also evident on a Suomi NPP VIIRS Day/Night Band (DNB) image at 08:49 UTC or 3:39 AM local time (below), highlighting the “visible image at night” capability of the DNB (given ample illumination from the Moon).

Suomi NPP VIIRS 0.7 µm Day/Night Band image

Suomi NPP VIIRS 0.7 µm Day/Night Band image