Hurricane Nate makes landfall in Louisiana and Mississippi

October 7th, 2017 |

GOES-16 Visible (0.64 µm. left) and Infrared Window (10.3 µm, right) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

GOES-16 Visible (0.64 µm. left) and Infrared Window (10.3 µm, right) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

1-minute interval Mesoscale Sector GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (above) showed the large central dense overcast (which exhibited cloud-top infrared brightness temperatures of -80ºC and colder, violet colors, and at times -90ºC and colder, yellow enhancement) and subsequent smaller convective bursts associated with Hurricane Nate on 07 October 2017.

After having moved north-northwestward at speeds up to 24 mph — quite possibly the fastest-moving tropical cyclone on record in the Gulf of Mexico — Nate made its initial landfall (as a Category 1 storm) in Louisiana near the mouth of the Mississippi River at 00 UTC on 08 October 2017 [note: Nate’s second landfall was around 0530 UTC near Biloxi, Mississippi]. A few reports of damaging winds and tornadoes were noted ahead of and during Nate’s landfall; a listing of other wind gusts can be seen here.

Earlier in the day, DMSP-17 SSMIS Microwave (85 GHz) imagery was hinting at the development of a closed eye structure beneath the central dense overcast seen on GOES-13 Infrared Window (10.7 µm) imagery (below).

GOES-13 Infrared Window (10.7 µm) and DMSP-17 SSMIS Microwave (85 GHz) images around 1215 UTC [click to enlarge]

GOES-13 Infrared Window (10.7 µm) and DMSP-17 SSMIS Microwave (85 GHz) images around 1215 UTC [click to enlarge]

Even though Nate passed over very warm water in the Gulf of Mexico (below), the fast forward motion of the storm limited its ability to take advantage of those warm waters and rapidly intensify.

Sea Surface Temperature and Ocean Heat Content analyses from 06 October, with an overlay of the 07 October path of Hurricane Nate ending at 12 UTC [click to enlarge]

Sea Surface Temperature and Ocean Heat Content analyses from 06 October, with an overlay of the 07 October path of Hurricane Nate ending at 12 UTC [click to enlarge]

September 2017: a record-setting month in terms of Atlantic tropical cyclone ACE

October 4th, 2017 |

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

The Accumulated Cyclone Energy (ACE) for September 2017 set a new record for any month over the North Atlantic basin:

Two significant contributors to this record ACE value were long-lived and very intense Hurricane Irma and Hurricane Maria.

Hurricane Irma – Ace: 66.6 – Duration: 13 Days

Montage of Hurricane Irma GOES-13 infrared images, with and without storm track/intensity [click to view]

Montage of Hurricane Irma GOES-13 infrared images, with and without storm track/intensity [click to view]

One noteworthy statistic of Hurricane Irma: during its 3 days and 3 hours as a Category 5 hurricane (above), the storm had an intensity of 160 knots or 185 mph for 37 consecutive hours — which set a new world record. GOES-16 “Clean” Infrared Window (10.3 µm) images during this period of 185 mph intensity (below) showed a well-defined eye, with cold cloud-top infrared infrared brightness temperatures (occasionally -80ºC or colder, denoted by the violet color enhancement) within the adjacent eyewall region.

GOES-16 Infrared Window (10.3 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

GOES-16 Infrared Window (10.3 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

Hurricane Maria – Ace: 44.6 – Duration: 14 Days

Montage of Hurricane Maria GOES-13 infrared images, with and without storm track/intensity [click to view]

Montage of Hurricane Maria GOES-13 infrared images, with and without storm track/intensity [click to view]

One noteworthy aspect of Hurricane Maria was its intensification to a Category 5 storm on 18 September (above) — just before making landfall on the island of Dominica — and less than 48 hours before making landfall over southeastern Puerto Rico as a high-end Category 4 storm. GOES-16 Infrared Window (10.3 µm) images at 1-minute (pre-landfall) and 30-second (post-landfall) time intervals (below) showed that while the eye of Maria quickly eroded as the tropical cyclone moved northwestward across the island and interacted with its rugged terrain, deep convection of the eyewall region persisted over much of Puerto Rico during the transect. Note that the last hourly surface observations from Roosevelt Roads (TJNR) and San Juan (TJSJ) were from 04 UTC and 09 UTC, respectively — after which times power and communications to weather equipment (such as the San Juan radar) were lost.

GOES-16 Infrared Window (10.3 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

GOES-16 Infrared Window (10.3 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

Hurricane Jose – Ace: 42.2 – Duration: 17 Days

Montage of Hurricane Jose GOES-13 infrared images, with and without storm track/intensity [click to view]

Montage of Hurricane Jose GOES-13 infrared images, with and without storm track/intensity [click to view]

Although not as intense as Irma or Maria, the long duration of Hurricane Jose allowed it to achieve an ACE value nearly as high.

Individual storm montage images are available here on the CIMSS Tropical Cyclones site.

Hurricane Irma in the eastern Atlantic Ocean

September 1st, 2017 |
Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images (Click to enlarge)

Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images (Click to enlarge)

A toggle between nighttime images of Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) data at 0347 UTC (courtesy of William Straka, SSEC/CIMSS) showed a high-resolution view of the eye of Category 3 Hurricane Irma.

 

Toggle of CIMSS True Color, GOES-16 Split Window Difference (10.3 µm – 12.3 µm) field, and GOES-16 Dust RGB Product, 1315 UTC on 1 September 2017 (Click to enlarge)

GOES-16 data (ABI and GLM) posted on this page are preliminary, non-operational and are undergoing testing

The animation above cycles through imagery from 1315 UTC on 1 September, showing CIMSS GOES-16 True Color Imagery, The GOES-16 Split Window Difference (10.3 µm – 12.3 µm), and the GOES-16 Dust RGB (Red-Green-Blue) Product. The Split Window Difference field highlights moist air (bright red in the enhancement) to the south of Irma, and also dryer air (blue in the color enhancement), to the north. The Saharan Air Analysis, below, from the CIMSS Tropical Weather Website, corroborates the placement of the dry air to the north of Irma, and Total Precipitable Water estimates (from here) also show dry air. This dry air could influence further strengthening of the storm in the short term.

Saharan Air Layer analysis on 01 September 2017 (Click to animate)

Irma is near the eastern edge of the GLM Domain for GOES-16 in the central Test position at 89.5 W Longitude; the animation below, with GLM Group information (every 10 minutes) over ABI Band 13 (10.3 µm, every 30 minutes from the Full Disk Domain), shows little lightning near the center of Irma on 30/31 August. Lightning was more active on 1 September.

GOES-16 ABI “Clean Window” 10.3 µm Infrared Imagery, every half hour, with GLM Group Data plotted in 10-minute increments from 0000 UTC on 30 September through 1200 UTC on 1 September 2017 (Click to animate)

Satellite trends with Irma show the development of an eye structure, as seen below in the screen capture from the GOES-13 Floater (source) at 1745 UTC, and DMSP-16 SSMIS Microwave (85 GHz) at 1829 UTC on 1 September.

GOES-13 10.7 µm Infrared Imagery, 1745 UTC, 1 September 2017 (Click to enlarge)

The evolution of the eye is also apparent in the GOES-16 Visible Imagery (0.64 µm), below, from 1315-1815 UTC on 1 September 2017.

GOES-16 Visible (0.64 µm) Imagery, 1315-1815 UTC, 1 September 2017 (Click to animate)

For more information on Irma, consult the webpages of the National Hurricane Center or the CIMSS Tropical Weather Website.

Hurricane Harvey makes landfall

August 26th, 2017 |

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

As Hurricane Harvey moved across warm waters in the northwestern Gulf of Mexico (SST | OHC), it continued to intensify (ADT | SATCON) to a Category 4 hurricane just before making landfall (which occurred around 03 UTC on 26 August 2017, or 10 pm local time on 25 August). A GOES-16 Mesoscale Sector had been positioned over Harvey, providing images at 30-second intervals; some of these are shown with “Red” Visible (0.64 µm) images prior to sunset (below). A GOES-16 vs GOES-13 (GOES-East) Visible image comparison is available here.

GOES-16 Visible (0.64 µm) images, with hourly surface ports plotted in yellow (Click to play MP4 animation)

GOES-16 “Red” Visible (0.64 µm) images, with hourly surface ports plotted in yellow [click to play MP4 animation]

Hurricane Harvey had a large eye on GOES-16 “Clean” Infrared Window (10.3 µm) images at landfall, which persisted — albeit becoming smaller with time — for many hours after it moved inland (below). A longer-term animation of 5-minute GOES-16 Infrared Window images (covering the period 23-27 August) is available here.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

A sequence of 4 Infrared Window images, from Suomi NPP VIIRS and Terra/Aqua MODIS, covering the period 0419-0851 UTC (below) showed the shrinking eye and the erratic path of Harvey once it moved inland.

Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) Infrared Window images [click to enlarge]

Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) Infrared Window images [click to enlarge]

A recap of the torrential rainfall amounts and maximum wind gusts caused by Hurricane Harvey can be seen in the WPC Storm Summary. A map showing the final storm total rainfall from Harvey is available here.