Refinery Explosion and Fire in Superior WI

April 26th, 2018 |

GOES-16 ABI “Red Visible” (0.64 µm) from 1532-2027 UTC on 26 April 2018 (Click to enlarge)

Explosions at an oil refinery in Superior WI on 26 April 2018 (news link) produced a black plume of smoke visible in the GOES-16 “Red Visible” Band, the highest resolution (0.5 km at nadir) band on GOES-16. The plume is first visible at about 1717 UTC, and it then streams southeastward over northwest Wisconsin. Areas immediately downwind of the refinery were evacuated due to air quality concerns.

The explosion and subsequent fire was not sufficiently hot to be detected by the shortwave infrared 3.9 µm channel on GOES-16. However, the smoke plume is obvious in this animation, cooler than the background by 3-4ºC, and yellow in the enhancement chosen.

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Near-Infrared “Vegetation” (0.86 µm, right) images [click to animate]

The dark smoke plume was also evident on Near-Infrared “Vegetation” (0.86 µm) images (above), aided by the additional contrast between the dark plume and the lighter gray appearance of the land surface.

GOES-16 Natural Color images [click to animate]

GOES-16 Natural Color RGB images [click to animate]

The GOES-16 Natural Color Red-Green-Blue (RGB) product (above) was also useful for identifying and tracking the smoke plume.

Aqua MODIS True Color and False Color RGB images [click to enlarge]

Aqua MODIS True Color and False Color RGB images [click to enlarge]

250-meter resolution Aqua MODIS True Color and False Color images from the MODIS Today site (above) provided a detailed view of the smoke plume at 1842 UTC. In the False Color image, snow cover and lake ice appear as shades of cyan.

Blowing Dust in Kansas

March 6th, 2018 |

GOES-16 Band 1 (“Blue Visible”) 0.47 µm Imagery, 1502 – 2132 UTC on 6 March 2018 along with surface METAR observation plots (Click to animate)

Strong northwesterly winds over the Great Plains to the west of a storm system over the mid-Mississippi River Valley have resulted in Red Flag Warnings over Oklahoma, and High Wind Warning and Dust Storm Warnings — including the closing of I-70 over Kansas. Visible Imagery in the “Blue Band”, above, shows little indication of the blowing dust (Click here for an animation without surface observations); dust is difficult to observe when sun angle are high. The higher-(spatial) resolution “Red Visible” animation, shown below, similarly struggles to identify with clarity where the dust is occurring.

The ‘Blue Band’ does detect plumes of smoke that develop over southern Kansas during this animation, plumes that originate over ‘hot spots’ in the 3.9 µm shortwave infrared imagery (not shown).

GOES-16 Band 2 (“Red Visible”) 0.64 µm Imagery, 1502 – 2132 UTC on 6 March 2018 along with surface METAR observation plots (Click to animate)

Infrared Imagery can be used to detect dust, both during the day and at night. This is because dust selectively absorbs energy. For example, energy at 10.3 µm that is emitted by the surface, and destined to be observed by the satellite, will be absorbed (and re-emitted from a higher, cooler level in the atmosphere) as it passes through the dust layer. Energy with a longer wavelength (12.3 µm), passes through dust mostly unaffected. Thus, a difference field between the two — the so-called Split Window Difference — will show negative values in regions where lofted dust is present in the atmosphere. An animation is shown below. As with imagery in this blog post, the colormap in the AWIPS display was changed to “Grid/Lowrange Enhanced”; dust regions are highlighted in yellow.  Dust is first detected in central Nebraska before it shows up in central and western Kansas. A closer view of the area where Interstate 70 was closed (between Goodland and Colby in northwestern Kansas) can be seen here.

GOES-16 Split Window Difference Field (10.3 µm – 12.3 µm) Imagery, 1502 – 2132 UTC on 6 March 2018 along with surface METAR observation plots (Click to animate)

The Cloud Phase Channel Difference field in AWIPS (Currently 10.3 µm – 8.5 µm, shortly to transition in AWIPS to 11.2 µm – 8.5 µm) can also detect dust (as was shown in this blog post), and that animation is shown below. Blowing Dust in this field is a bright green — and this Difference field (compared to the Split Window Difference) better identifies sources of plumes over western Kansas.

GOES-16 Cloud Phase Brightness Temperature Difference Field (10.3 µm – 8.5 µm) Imagery, 1502 – 2132 UTC on 6 March 2018 (Click to animate)

The Dust RGB, below, combines both the Split Window Differerence (the ‘Red Gun’) and the Cloud Phase Brightness Temperature Difference (the ‘Green Gun’), as well as the Clean Window (10.3 µm, ‘Blue Gun’, not shown). Dust in this RGB is typically bright pink, and its presence is notable over western Kansas.

GOES-16 Dust Red-Green-Blue (RGB) Composite Imagery, 1502 – 2132 UTC on 6 March 2018 (Click to animate)

Closer to sunset, at 2252 UTC on 6 March, the Dust Plume is readily apparent in the Band 1 and Band 2 imagery, shown below in a toggle with infrared channel differences and the Dust RGB.

GOES-16 Band 1 (“Blue Visible”) 0.47 µm Imagery, Band 2 (“Red Visible”) 0.64 µm Imagery, Split Window Difference (10.3 µm – 12.3 µm), Cloud Phase (10.3 µm – 8.5 µm) Brightness Temperature Difference and Dust RGB, all at 2252 UTC on 6 March 2018 (Click to enlarge)

Hat tip to Jeremy Martin, the SOO in the Goodland KS National Weather Service Office, for alerting us to this case!

Blowing dust in Texas and Oklahoma

January 21st, 2018 |

GOES-16

GOES-16 “Moisture” Infrared brightness temperature difference (10.3-12.3 µm) images, with hourly surface reports plotted in cyan [click to play animation]

Strong winds in the wake of a cold frontal passage created large areas of blowing dust across the Panhandle Plains of northwestern Texas after 16 UTC on 21 January 2018. GOES-16 “Moisture” or “split-window difference” (10.3 µm12.3 µm) images (above) showed that the leading edge of this airborne dust moved over far southwestern Oklahoma after 20 UTC. (Note to AWIPS users: the default enhancement for this GOES-16 “Moisture” Channel Difference product was changed to “Grid/lowrange enhanced” to better highlight the dust with shades of yellow)

GOES-16 “Red” Visible (0.64 µm) and Near-Infrared “Cirrus” (1.37 µm) images (below) also displayed blowing dust signatures; the surface visibility was restricted to 2-3 miles at some locations, with Big Spring briefly reporting only 1/4 mile from 20-21 UTC. The dust signature was apparent on the Cirrus imagery because this spectral band can be used to detect any airborne particles that are effective scatterers of light (such as cirrus ice crystals, volcanic ash, dust/sand or haze).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly reports of surface weather plotted in red and surface visibility (miles) plotted in red [click to play animation]

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Cirrus” (1.37 µm) images, with hourly reports of surface weather plotted in red and surface visibility (miles) plotted in red [click to play animation]

A Cirrus band is also available with the MODIS instrument on the Terra and Aqua satellites (as well as the VIIRS instrument on Suomi NPP and NOAA-20) — a comparison of Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images from Terra and Aqua (below) highlighted the differing appearance of the blowing dust features as sensed by each of those spectral bands. The airborne dust exhibited a darker signature in the Shortwave Infrared images since the small dust particles were efficient reflectors of incoming solar radiation, thus appearing warmer at 3.7 µm.

Terra MODIS Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images, with surface reports plotted in cyan [click to enlarge]

Terra MODIS Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images, with surface reports plotted in cyan [click to enlarge]

Aqua MODIS Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images, with surface reports plotted in cyan [click to enlarge]

Aqua MODIS Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images, with surface reports plotted in cyan [click to enlarge]

Pilot reports within 20-45 minutes after the Terra overpass time (below) revealed Moderate to Severe turbulence at an elevation of 8000 feet, just southeast of the most dense dust plume feature (highlighted by the cooler, lighter gray infrared brightness temperatures) — this was likely due to strong wind shear in the vicinity of the rapidly-advancing cold front. Farther to the southwest, another pilot report indicated that the top of the blowing dust was at 7000 feet, with a flight-level visibility of 3 miles at 10,000 feet.

Terra MODIS Infrared Window (11.0 µm) image, with a pilot report of turbulence highlighted in red [click to enlarge]

Terra MODIS Infrared Window (11.0 µm) image, with a pilot report of turbulence highlighted in red [click to enlarge]

Terra MODIS Infrared Window (11.0 µm) image, with a pilot report of dust layer top and flight level visibility highlighted in red [click to enlarge]

Terra MODIS Infrared Window (11.0 µm) image, with a pilot report of dust layer top and flight level visibility highlighted in red [click to enlarge]

Wildfires in southern California

December 5th, 2017 |

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 (GOES-West) Shortwave Infrared (3.9 µm) images (above; also available as an animated GIF) showed the rapid development of wildfires driven by strong Santa Ana winds in Southern California on 05 December 2017. The fire thermal anomalies or “hot spots” are highlighted by the dark black to yellow to red pixels — the initial signature was evident on the 0230 UTC image (6:30 PM local time on 04 December), however the GOES-15 satellite was actually scanning that particular area at 0234 UTC or 6:34 PM local time. The Thomas Fire (the largest of the fires) advanced very quickly toward the southwest, nearly reaching the coast.

Nighttime image toggles between Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) data at 0904 UTC and 1044 UTC (below) revealed the large fire hot spots, along with the extensive smoke plume that was drifting over the adjacent nearshore waters of the Pacific Ocean. With ample illumination from the Moon (which was in the Waning Gibbous phase, at 95% of Full), the “visible image at night” capability of the VIIRS Day/Night Band — which will also be available from the recently-launched JPSS-1/NOAA-20 satellite — was clearly demonstrated.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

A toggle between the two VIIRS Day/Night Band images (below; courtesy of William Straka, CIMSS) showed initial darkness resulting from fire-related power outages in Santa Barbara County to the north, and Ventura County to the south (in the Oxnard/Camarillo area).

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

This large wind-driven fire was also very hot — the maximum brightness temperature on the VIIRS 4.05 µm Shortwave Infrared image was 434.6 K or 322.6º F, which was above the saturation threshold of the VIIRS 3.75 µm Shortwave Infrared detectors (below).

Suomi NPP VIIRS 4.05 µm and 3.75 µm Shortwave Infrared images [click to enlarge]

Suomi NPP VIIRS 4.05 µm and 3.75 µm Shortwave Infrared images [click to enlarge]

In a comparison of daytime GOES-15 Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (below), the west-southwestward transport of smoke over the Pacific Ocean was clearly seen.

GOES-15 Visible (0.63 µm, top) and Shortwave Infrared (3.9 µm, bottom) images [click to play MP4 animation]

GOES-15 Visible (0.63 µm, top) and Shortwave Infrared (3.9 µm, bottom) images [click to play MP4 animation]

A more detailed view of the thick smoke originating from the 3 fires (from north to south: the Thomas, Rye and Creek fires) was provided by a 250-meter resolution Aqua MODIS true-color Red-Green-Blue (RGB) image from the MODIS Today site (below).

Aqua MODIS true-color RGB image [click to enlarge]

Aqua MODIS true-color RGB image [click to enlarge]

Immediately downwind of the Creek Fire, smoke was reducing the surface visibility to 1 mile at Van Nuys and adversely affecting air quality (below).

Time series plot of surface reports at Van Nuys, California [click to enlarge]

Time series plot of surface reports at Van Nuys, California [click to enlarge]

===== 06 December Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images [click to enlarge]

The fires in Southern California continued to burn into the following night, as shown by Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images (above; courtesy of William Straka, CIMSS). A large-scale view with Day/Night Band imagery revealed the extent of smoke transport westward over the Pacific Ocean.

GOES-15 Shortwave Infrared (3.9 µm) images (below) displayed the thermal signatures exhibited by the fires. Note the appearance of a new fire — the Skirball Fire — first appearing on the 1300 UTC (5:00 AM local time) image, just north of Santa Monica (KSMO). Although the Santa Ana winds were not quite as strong as the previous day, some impressive wind gusts were still reported.

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

A toggle between 250-meter resolution Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color images from MODIS Today (below) showed significant pyrocumulus development from a flare-up along the northeast perimeter of the Thomas Fire. The cloud plume only exhibited a minimum infrared brightness temperature of +5.5º C on the corresponding Aqua MODIS Infrared Window image, far above the -40ºC threshold assigned to pyroCumulonimbus clouds.

Comparison of Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color RGB images [click to enlarge]

Comparison of Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color RGB images [click to enlarge]

===== 07 December Update =====

Suomi NPP Day Night Band Imagery, 3-7 December 2017, over southern California

RealEarth imagery of the Day Night Band over 5 days (one image each night from 3 through 7 December), above, shows the evolution of the fire complex (Imagery courtesy Russ Dengel, SSEC). Similarly, a closer view of daily composites of VIIRS Shortwave Infrared (3.74 µm) imagery (below) revealed the growth and spread of the Thomas Fire from 04-07 December.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) image composites [click to enlarge\

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) image composites [click to enlarge]

In a toggle between Terra MODIS true-color and false-color RGB images (below), the large burn scar of the Thomas Fire (shades of red to brown) was very apparent on the false-color image.

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]