GOES-16 daytime and nighttime images of the West Mims Fire in Georgia

April 25th, 2017 |

GOES-16 Blue Visible (0.47 µm, top), Red Visible (0.64 µm, center) and Shortwave Infrared (3.9 µm, bottom) images, with hourly surface plots in yellow [click to play animation]

GOES-16 “Blue” Visible (0.47 µm, top), “Red” Visible (0.64 µm, center) and Shortwave Infrared (3.9 µm, bottom) images, with hourly surface plots in yellow [click to play animation]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

A daytime comparison of GOES-16 ABI “Blue” Visible (0.47 µm), “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above; also available as an MP4 animation) displayed the smoke plume and “hot spots” (black to yellow to red pixels) associated with the West Mims Fire that was burning in far southeastern Georgia on 25 April 2017 (this fire complex had been burning since 06 April, during which time the drought conditions had been worsening across that region). Downwind of the fire, in far northeastern Florida, smoke reduced the surface visibility to 2 miles at Jacksonville and 5 miles at Fernandina Beach.

During the subsequent nighttime hours — as the fires were beginning to decrease in both intensity and areal coverage — a comparison of “Snow/Ice” Near-Infrared (1.61 µm), “Cloud-Top Phase” Near-Infrared (2.24 µm) and Shortwave Infrared (3.9 µm) images (below; also available as an MP4 animation) showed that a bright glow from the most intense fires was evident in both of the Near-Infrared spectral bands.

GOES-16

GOES-16 “Snow/Ice” Near-Infrared (1.61 µm, top), “Cloud-Top Phase” Near-Infrared (2.24 µm, center) and Shortwave Infrared (3.9 µm, bottom) images, with hourly surface plots in yellow [click to play animation]

Although the spatial resolution of the 1.61 µm Band 5 is 1 km (at satellite sub-point) versus 2 km for the 2.24 µm Band 6, the bright nighttime fire signature was more defined on the 2.24 µm imagery; this is explained by examining a plot of the Spectral Response Function (SRF) for each band (below; courtesy of Mat Gunshor, CIMSS). For a very hot fire target — represented by the red 1200 K line — the 2.24 µm Band 6 SRF is located near the peak of the 1200 K curve, so more of the fire-emitted radiance can be sensed by Band 6 (in spite of its lower spatial resolution).

Spectral Response Function plots for GOES-16 ABI Band 5 (1.61 µm), Band 6 (2.24 µm) and Band 7 (3.9 µm) [click to enlarge]

Spectral Response Function plots for GOES-16 ABI Band 5 (1.61 µm), Band 6 (2.24 µm) and Band 7 (3.9 µm) [click to enlarge]

Fires in eastern Kansas and Oklahoma

April 11th, 2017 |

GOES-16 (left) and GOES-13 (right) Shortwave Infrared (3.9 µm) images [click to play animation]

GOES-16 (left) and GOES-13 (right) Shortwave Infrared (3.9 µm) images [click to play animation]

 ** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

A comparison of GOES-16 and GOES-13 Shortwave Infrared (3.9 µm) images (above) showed numerous fire “hot spot” signatures (black to yellow to red pixels, with red being the hottest) from prescribed burning across the Flint Hills region of eastern Kansas and northeastern Oklahoma on 11 April 2017. Such fires are an annual tradition in this area, required to preserve the tallgrass prairies — for example, over 2.7 million acres were burned during Spring 2016. The 2-km spatial resolution (at satellite sub-point) and 5-minute scan interval of GOES-16 allowed for more accurate detection and monitoring of the fires (compared to the 4-km spatial resolution and 15-30 minute scan interval of GOES-13).

The corresponding Visible GOES-16 (0.64 µm) vs GOES-13 (0.63 µm) images (below) tracked the development and transport of smoke from the fires. Hourly reports of surface visibility (in statute miles) are plotted in red; at Fort Riley, Kansas, smoke reduced the visibility from 10.0 miles at 21 UTC to 1.0 mile at 23 UTC, adversely affecting air quality there.

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images, with hourly reports of surface visibility (statute miles, red) [click to play animation]

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images, with hourly reports of surface visibility (statute miles, red) [click to play animation]

Grass fires in Kansas, Oklahoma and Texas

March 6th, 2017 |

Widespread large grass fires began to burn across parts of northwestern Oklahoma, southwestern Kansas, and the Texas Panhandle on 06 March 2017. The fires grew very quickly during the late morning and early afternoon hours, due to strong southwesterly winds (with gusts as high as 67 mph in Oklahoma) behind a dryline (surface analyses); a cold front then moved southward across the region during the late afternoon and evening hours, bringing strong northerly/northwesterly winds.

GOES-16 (left) and GOES-13 (right) 3.9 µm Shortwave Infrared images [click to play MP4 animation]

GOES-16 (left) and GOES-13 (right) Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

*  GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

In the 2-panel comparison shown above (also available as a 204 Mbyte animated GIF), Shortwave Infrared (3.9 µm) images — 1-minute interval (Mesoscale Sector) 2-km resolution GOES-16 vs. 5-7 minute interval (Rapid Scan Operations) 4-km resolution GOES-13 — fire “hot spots” (dark black to yellow to red pixels) from the large Starbuck Fire can be seen making a very fast northeastward run from the eastern Oklahoma Panhandle into southwestern Kansas, behind the dryline; later, after the passage of the cold front, the leading edge of that fire and another large Kansas fire turned southward and moved back into Oklahoma. Another large fire in the Texas Panhandle (the Perryton Fire) moved rapidly eastward and crossed the border into Oklahoma (moving a distance of about 45 miles), before also turning abruptly southward in the wake of the aforementioned cold frontal passage. A total of 7 deaths resulted from these fires (CNN).

===== 07 March Update =====

On the following day, the large size of the grass fire burn scars could be seen in comparisons of true-color and false-color Red/Green/Blue (RGB) images from Terra MODIS (1732 UTC), Suomi NPP VIIRS (1857 UTC) and Aqua MODIS (1912 UTC) images viewed using RealEarth (below). The burn scars appeared as dark areas in the true-color images, and shades of tan to darker brown in the false-color images.

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images at 1732 UTC [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images at 1857 UTC [click to enlarge]

Aqua MODIS true-color and false-color images [click to enlarge]

Aqua MODIS true-color and false-color images at 1912 UTC [click to enlarge]

The creation of true-color and false-color images such as these will be possible using the ABI spectral bands available on GOES-16 and the GOES-R series of satellites. A separate blog post highlighting other multi-spectral GOES-16 views of these fire burn scars on 07 March  is available here.

Fires continue in the southeast United States

November 14th, 2016 |

Terra MODIS (1650 UTC), Aqua MODIS (1829 UTC) and Suomi NPP VIIRS (1913 UTC) true-color images [click to enlarge]

Terra MODIS (1650 UTC), Aqua MODIS (1829 UTC) and Suomi NPP VIIRS (1913 UTC) true-color images [click to enlarge]

Fires (as seen on 07 and 10 November) continued to burn in parts of the southeast US on 14 November 2016. A sequence of 3 consecutive true-color Red/Green/Blue (RGB) images from Terra MODIS (1650 UTC), Aqua MODIS (1829 UTC) and Suomi NPP VIIRS (1913 UTC) viewed using RealEarth, above, showed the aerial extent of the dense smoke that was most concentrated over Tennessee, Georgia, North Carolina and South Carolina. With the aid of some of the 16 spectral bands on the ABI instrument aboard GOES-R, true-color images like these will be available at least once every 5 minutes over the Lower 48 states and adjacent areas.

GOES-13 (GOES-East) Visible (0.63 µm) images with plots of surface weather and visibility (below; also available as an MP4 animation) revealed that visibility was restricted to 3 miles or less at one or more sites in all of the aforementioned states. A pair of pilot reports in eastern Tennessee indicated that he top of the smoke layer was at 6000 feet above ground level.

GOES-13 Visible (0.63 µm) images, with hourly plots of surface weather (yellow) and visibility (statute miles, in cyan) [click to animate]

GOES-13 Visible (0.63 µm) images, with hourly plots of surface weather (yellow) and visibility (statute miles, in cyan) [click to animate]

High loading of particulate matter (PM) due to smoke led to AIRNow Air Quality Index ratings of Unhealthy (red)  to Very Unhealthy (purple) over much of that 4-state region (below).

Hourly AIRNow Particulate Matter (PM) Air Quality Index (AQI)

Hourly AIRNow Particulate Matter (PM) Air Quality Index (AQI)

===== 15 November Update =====

Suomi NPP VIIRS Shortwave Infrared (3.74 um) and Day/Night Band (0.7 um) images, plus METAR surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 um) and Day/Night Band (0.7 um) images, plus METAR surface reports [click to enlarge]

A toggle between Suomi NPP VIIRS Shortwave Infrared (3.74 um) and Day/Night Band (0.7 um) images (with and without METAR surface reports) at 0735 UTC or 3:35 am local time on 15 November (above) showed the “hot spot” signatures and bright glow from the larger fires that were burning in northern Georgia and western North Carolina. With ample illumination from the Moon — which was in the Waning Gibbous phase, at 99% of Full — smoke plumes from some of these fires could be seen drifting southward or southeastward,  thanks to the “visible image at night” capability of the Day/Night Band.

During the subsequent daytime hours, Terra MODIS and Suomi NPP VIIRS true-color RGB images (below) again revealed the vast coverage of the thick smoke — and VIIRS Aerosol Optical Depth values were quite high over South Carolina. Unhealthy AQI values persisted during much of the day across parts of Tennessee, Georgia and South Carolina.

Terra MODIS and Suomi NPP VIIRS true-color images, with VIIRS Aerosol Optical Depth (click to enlarge]

Terra MODIS and Suomi NPP VIIRS true-color images, with VIIRS Aerosol Optical Depth (click to enlarge]

A sampling of pilot reports (PIREPS) showed some of the impacts that the smoke was having on aviation (below).

Suomi NPP VIIRS Visible (0.64 µm) image with a PIREP over South Carolina [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) image with a PIREP over South Carolina [click to enlarge]

Aqua MODIS Visible (0.65 µm) image with a PIREP over Georgia [click to enlarge]

Aqua MODIS Visible (0.65 µm) image with a PIREP over Georgia [click to enlarge]

GOES-13 Visible (0.63 µm) image with a PIREP over North Carolina [click to enlarge]

GOES-13 Visible (0.63 µm) image with a PIREP over North Carolina [click to enlarge]

===== 16 November Update =====

Terra/Aqua MODIS and Suomi NPP VIIRS true- color images [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS true- color images [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS true-color images (above) showed that much of the smoke had moved over the adjacent offshore waters of the Atlantic Ocean on 16 November.