Wildfires in Northern California

October 9th, 2017 |

GOES-16 Shortwave Infrared (3.9 µm) images, with county outlines plotted in gray (dashed) and surface station identifiers plotted in white [click to play MP4 animation]

GOES-16 Shortwave Infrared (3.9 µm) images, with county outlines plotted in gray (dashed) and surface station identifiers plotted in white [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

GOES-16 Shortwave Infrared (3.9 µm) images (above) showed the “hot spot” signatures (black to yellow to red pixels) associated with numerous wildfires that began to burn in Northern California’s Napa County around 0442 UTC on 09 October 2017 (9:42 PM local time on 08 October). A strong easterly to northeasterly Diablo wind (gusts) along with dry fuels led to extreme fire behavior, with many of the fires quickly exhibiting very hot infrared brightness temperature values and growing in size at an explosive rate (reportedly burning 80,000 acres in 18 hours).

A comparison of nighttime GOES-16 Shortwave Infrared (3.9 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (below) offered another example of nocturnal fire signature identification — the bright glow of the fires showed up well on the 1-km resolution 1.61 µm imagery. Especially noteworthy was the very rapid southwestward run of the Tubbs Fire, which eventually moved just south of station identifier KSTS (Santa Rosa Sonoma County Airport; the city of Santa Rosa is located about 5 miles southeast of the airport. These Northern California fires have resulted in numerous fatalities, destroyed at least 3500 homes and businesses, and forced large-scale evacuations (media story).

GOES-16 Shortwave Infrared (3.9 µm, left) and Near-Infrared

GOES-16 Shortwave Infrared (3.9 µm, left) and Near-Infrared “Snow/Ice” (1.61 µm, right) images [click to play MP4 animation]

A toggle between 1007 UTC (3:07 AM local time) Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images (below) provided a view of the fires at an even higher spatial resolution. Since the Moon was in the Waning Gibbous phase (at 82% of Full), it provided ample illumination to highlight the dense smoke plumes drifting west-southwestward over the adjacent offshore waters of the Pacific Ocean.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A closer VIIRS image comparison (with county outlines) is shown below.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A comparison of Suomi NPP VIIRS true-color and false-color Red/Green/Blue (RGB) images from RealEarth (below) helped to discriminate between smoke and cloud features offshore over the Pacific Ocean.

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

===== 10 October Update =====

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

With the switch to southwesterly surface winds on 10 October, smoke plumes could be seen moving northeastward on RealEarth VIIRS true-color imagery, while the burn scars of a number of the larger fires became apparent on VIIRS false-color RGB imagery (above).

===== 12 October Update =====

Suomi NPP VIIRS true-color RGB images, with VIIRS-detected fire locations [click to enlarge]

Suomi NPP VIIRS true-color RGB images, with VIIRS-detected fire locations [click to enlarge]

A transition back to northerly winds on 12 October helped to transport the wildfire smoke far southward over the Pacific Ocean (above). Smoke was reducing surface visibility and adversely affecting air quality at locations such as San Francisco (below).

Time series plot of surface observations at San Francisco International Airport [click to enlarge]

Time series plot of surface observations at San Francisco International Airport [click to enlarge]

Suomi NPP VIIRS Aerosol Optical Depth values were very high — at or near 1.0 — within portions of the dense smoke plume (below).

Suomi NPP VIIRS true-color RGB image and Aerosol Optical Depth product [click to enlarge]

Suomi NPP VIIRS true-color RGB image and Aerosol Optical Depth product [click to enlarge]

Widespread Smoke in the Pacific Northwest

September 6th, 2017 |

GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing

Dry weather over the Pacific Northwest (and over Idaho and Montana) has created an ideal environment lately for wildfires, and much of the region is shrouded in smoke from those fires as shown in the Suomi NPP True Color Imagery, above, from this site.  Note the red points that are Suomi-NPP-detected fires; they persist from day to day, and some grow in size during the course of the animation. GOES-16 Animations of True Color (in this case, the CIMSS Natural True Color product that is created using Bands 1, 2 and 3 (0.47 µm, 0.64 µm and 0.86 µm, respectively)), below, (also available here; a similar product from CIRA is available here), show the pall of smoke as well. Air Quality Alerts from the National Weather Service were widespread on 6 September.

CIMSS Natural True Color, every 15 minutes, from 1400-2130 UTC on 6 September 2017 (Click to animate)

GOES-16 has multiple channels and products that can view both the Smoke and the Fires that produce the smoke. In addition to the visible imagery, Fire Products, below, can characterize the Temperature, Power (in megawatts) and area (in square meters) of the fire detected by GOES-16.  On this day, clouds over the fires in Oregon mean that satellite detection is challenged, even though the by-product, smoke, is apparent.  Fires over Idaho are readily apparent however.  These fires were also detected by the 3.9 µm Shortwave Infrared channel on GOES-16, the traditional fire-detection channel (used in concert with 10.3 µm, the clean window channel).  Imagery at 1.6 µm and 2.2 µm imagery can also be used to highlight hot fires;  that will be the subject of a future blog post.

GOES-16 Fire Products: Fire Temperature, Fire Power and Fire Area, 2037 UTC on 6 September 2017 (Click to enlarge)

 

The mp4 animation, below, shows CIMSS Natural True Color over the Full Disk on 5 September 2017.  The Full Disk View allows a better visualization of how the smoke is moving (and underscores how widespread it is) — and it shows Hurricane Irma as well.

CIMSS Natural True Color, every 15 minutes, on 5 September 2017 (Click to animate)

 

NOAA creates many Smoke-related products, some of which are easily accessible at this link.

Blowing Dust over northern Montana

May 24th, 2017 |

GOES-16 Visible Imagery (0.64 µm) from 1707 through 1802 UTC on 24 May 2017 (Click to enlarge)

GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing

The strong pressure gradient around a Low Pressure system over Alberta and Saskatchewan caused strong winds across northern Montana on 24 May 2017, and blowing dust was the result, especially in Hill and Blaine Counties. The visible animation, above, from 1707 to 1802 UTC on 24 May, shows a faint hazy signature along the border of Canada.  The emphasis is on the word ‘faint’ — it is very difficult to pick out the signature unless you know it’s there already  (Thanks to MIC Tanja Fransen at WFO Glasgow for alerting us to this event).  The ‘Blue’ Visible band animation (below) similarly shows the dust, but it is not distinct in this band either.  (*Note* — part of this, of course, is because the default enhancement for visible imagery has been used.  If the ‘low light’ enhancement is applied, the dust signature is more apparent. This visible animation from 1502-2122, courtesy Tanja Fransen, more obviously shows the dust).

GOES-16 Visible Imagery (0.47 µm) from 1707 through 1802 UTC on 24 May 2017 (Click to enlarge)

Brightness Temperature Difference products are routinely available in AWIPS. The Split-Window Difference (SWD), below, shows the difference between the ‘Clean Infrared Window’ (10.33 µm) and the ‘Dirty Infrared Window’ (12.3 µm) (‘Clean’ and ‘Dirty’ referring to a little and more, respectively, water vapor absorption) has historically been used to detect dust: dust will absorb 10.33 µm radiation but it will not absorb 12.3 µm radiation, thus the SWD can highlight regions of dust.  However, that difference is also influenced by water vapor above the dust, and by the type of dust being lofted.

Split Window Difference (10.33 µm – 12.2 µm) from 1707 to 1802 UTC, 24 May 2017 (Click to enlarge)

The Cloud Phase Difference (8.5 µm – 11.2 µm) also can highlight regions of dust, and for this case the signal of dust was a bit more distinct.

Cloud Phase Brightness Temperature Difference (8.5 µm – 11.2 µm) from 1707 to 1802 UTC, 24 May 2017 (Click to enlarge)

Surface data plotted over the 0.64 µm at 1712 UTC, below, show the strong winds in the region (Here is an image at 1802 UTC). Visibilities in the areas of blowing dust were reported to be near zero.

GOES-16 Visible (0.64 µm) at 1712 UTC and 1700 UTC surface observations (Click to enlarge)

A Terra MODIS true-color Red/Green/Blue (RGB) image at 1745 UTC, below, revealed that the source of some of the most dense dust plumes appeared to be uncultivated fields located north and northeast of Havre.

Terra MODIS true-color RGB image (Click to enlarge)

Terra MODIS true-color RGB image (Click to enlarge)

(Added: Stuart Lawrence, south of Rosetown in west-central Saskatchewan, tweeted out this video that showed the dust storm there. He reported winds up to 98 km/hour). Here is another image of the dust in Saskatchewan.

The GOES Aerosol/Smoke Products (GASP) showed a noticeable signal for this dust. Here is a large-scale animation from 1315-2145 UTC, with a closer view from 1015-2345 UTC here)

GOES-16 daytime and nighttime images of the West Mims Fire in Georgia

April 25th, 2017 |

GOES-16 Blue Visible (0.47 µm, top), Red Visible (0.64 µm, center) and Shortwave Infrared (3.9 µm, bottom) images, with hourly surface plots in yellow [click to play animation]

GOES-16 “Blue” Visible (0.47 µm, top), “Red” Visible (0.64 µm, center) and Shortwave Infrared (3.9 µm, bottom) images, with hourly surface plots in yellow [click to play animation]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

A daytime comparison of GOES-16 ABI “Blue” Visible (0.47 µm), “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above; also available as an MP4 animation) displayed the smoke plume and “hot spots” (black to yellow to red pixels) associated with the West Mims Fire that was burning in far southeastern Georgia on 25 April 2017 (this fire complex had been burning since 06 April, during which time the drought conditions had been worsening across that region). Downwind of the fire, in far northeastern Florida, smoke reduced the surface visibility to 2 miles at Jacksonville and 5 miles at Fernandina Beach.

During the subsequent nighttime hours — as the fires were beginning to decrease in both intensity and areal coverage — a comparison of “Snow/Ice” Near-Infrared (1.61 µm), “Cloud-Top Phase” Near-Infrared (2.24 µm) and Shortwave Infrared (3.9 µm) images (below; also available as an MP4 animation) showed that a bright glow from the most intense fires was evident in both of the Near-Infrared spectral bands.

GOES-16

GOES-16 “Snow/Ice” Near-Infrared (1.61 µm, top), “Cloud-Top Phase” Near-Infrared (2.24 µm, center) and Shortwave Infrared (3.9 µm, bottom) images, with hourly surface plots in yellow [click to play animation]

Although the spatial resolution of the 1.61 µm Band 5 is 1 km (at satellite sub-point) versus 2 km for the 2.24 µm Band 6, the bright nighttime fire signature was more defined on the 2.24 µm imagery; this is explained by examining a plot of the Spectral Response Function (SRF) for each band (below; courtesy of Mat Gunshor, CIMSS). For a very hot fire target — represented by the red 1200 K line — the 2.24 µm Band 6 SRF is located near the peak of the 1200 K curve, so more of the fire-emitted radiance can be sensed by Band 6 (in spite of its lower spatial resolution).

Spectral Response Function plots for GOES-16 ABI Band 5 (1.61 µm), Band 6 (2.24 µm) and Band 7 (3.9 µm) [click to enlarge]

Spectral Response Function plots for GOES-16 ABI Band 5 (1.61 µm), Band 6 (2.24 µm) and Band 7 (3.9 µm) [click to enlarge]