Wildfire smoke across the Midwestern US

August 11th, 2018 |

GOES-16 Natural Color RGB images [click to play MP4 animation]

GOES-16 Natural Color RGB images, 09-11 August [click to play MP4 animation]

Numerous wildfires burning in southwestern Canada (primarily British Columbia: NOAA HMS fire/smoke product) produced large amounts of smoke, which was subsequently transported eastward across southern Canada and then southward across the Midwestern US during the 09 August11 August 2018 period. GOES-16 (GOES-East) Natural Color Red-Green-Blue (RGB) images from the AOS site (above) showed this smoke, portions of which were optically very thick at times (and were able to cast shadows owing to its significant vertical depth).

On 09 August the smoke was most highly concentrated over the Dakotas, as shown in a comparison of GOES-16 Aerosol Optical Depth (AOD), Smoke Detection, “Blue” Visible (0.47 µm) and “Red” Visible (0.64 µm) images (below). While much of the smoke was likely aloft within the middle troposphere, some had been mixed downward into the boundary layer and was restricting the surface visibility to 3-5 miles at many locations.

Note that the hazy signature of the widespread smoke was a bit more apparent in the 0.47 µm Visible imagery than the 0.64 µm Visible imagery, especially during mid-day when the sun-satellite “forward scattering angle” was at a minimum. The AOD and Smoke Detection derived products use data from Visible and Near-Infrared bands — so it they are only available during daytime hours (and only at solar zenith angles less than 60 degrees). The Smoke Detection product was more effective during times of enhanced forward scattering (early and late in the day) — but it also was susceptible to false alarms due to solar reflectance off water surfaces. Additional information on GOES-R Aerosol Detection Products in AWIPS is available here and here.

GOES-16 Aerosol Optical Depth (top left), Smoke Detection product (top right).

GOES-16 Aerosol Optical Depth (top left), Smoke Detection product (top right). “Blue” Visible (0.47 µm, bottom left) and “Red” Visible (0.64 µm, bottom right) [click to play animation | MP4]

On 10 August, the smoke was most dense across the eastern Dakotas and Minnesota (below) — and once again, surface visibilities were restricted to 3-5 miles at some locations. On this day pilot reports mentioned flight visibility being restricted to 3 miles at altitudes as high as 12,000 feet.

GOES-16 Aerosol Optical Depth (top left), Smoke Detection product (top right). "Blue" Visible (0.47 µm, bottom left) and "Red" Visible (0.64 µm, bottom right) [click to play animation | MP4]

GOES-16 Aerosol Optical Depth (top left), Smoke Detection product (top right). “Blue” Visible (0.47 µm, bottom left) and “Red” Visible (0.64 µm, bottom right) [click to play animation | MP4]

Finally, on 11 August a north-to-south plume of particularly dense smoke drifted southward across Minnesota and Iowa, as seen in a comparison of GOES-16 Aerosol Optical Depth, “Red” Visible (0.64 µm). Near-Infrared “Cirrus” (1.37 µm) and “Clean” Infrared Window (10.3 µm) images (below). In this case the AOD values were quite high (in excess of 3.0 in northwestern Minnesota), beyond the range of values scaled for display in AWIPS — this led to the swath of black “No Data” values where the smoke was most dense. This plume of thick smoke also exhibited a signature in Near-Infrared “Cirrus” imagery; higher concentrations of airborne particles that are effective scatterers of light at the 1.37 µm wavelength (such as ice crystals, smoke, volcanic ash, or dust) will show up on this imagery. Note the lack of a well defined signature on the 10.3 µm imagery — smoke is effectively transparent to radiation at these longer infrared wavelengths.

GOES-16 Aerosol Optical Depth (top left), "Red" Visible (0.64 µm, top right). Near-Infrared "Cirrus" (1.37 µm, bottom left) and "Clean" Infrared Window (10.3 µm, bottom right) [click to play animation | MP4]

GOES-16 Aerosol Optical Depth (top left), “Red” Visible (0.64 µm, top right). Near-Infrared “Cirrus” (1.37 µm, bottom left) and “Clean” Infrared Window (10.3 µm, bottom right) [click to play animation | MP4]

On a side note, the north-south plume of dense smoke over the Midwest US on 11 August was also very apparent from a distance of 983,269 miles (1,582,418.07 km) — 44 times the distance of the GOES-16 satellite — using EPIC Natural Color imagery from the DSCOVR satellite (below).

DSCOVR EPIC Natural Color images [click to enlarge]

DSCOVR EPIC Natural Color images [click to enlarge]

Smoke from Mendocino Complex fires in California

August 4th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images, with hourly plots of surface observations [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above) showed the smoke and thermal anomalies or “hot spots” (red pixels) associated with the Mendocino Complex burning in Northern California on 04 August 2018. Smoke was reducing the surface visibility to 2.5 miles at nearby Sacramento International Airport KSMF and Marysville KMYV. As of 7pm local time on 04 August the Mendocino Complex had burned 229,000 acres.

A 30-meter resolution Landsat-8 False Color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed active burning along the eastern edge of the Ranch Fire (part of the Mendocino Complex) at 1845 UTC. The larger fire was producing a pyrocumulus cloud in addition to the dense smoke plume drifting northeastward.

Landsat-8 False Color image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

GOES-16 Upper-level (6.2 µm), Mid-level (6.9 µm) and Low-level (7.3 µm) Water Vapor images (below) revealed a southwest-to-northeast oriented band of moisture and fast flow associated with a middle to upper-tropospheric jet streak that was moving over the region (300 hPa analyses). “Red” Visible (0.64 µm) images showed the smoke plume drifting rapidly northeastward over California and Nevada, and visible Derived Motion Winds — which are calculated for pressure levels at and below 700 hPa —  tracked the smoke moving as fast as 58 knots at 2337 UTC. This speed was faster than 00 UTC winds at or below 700 hPa on rawinsonde data from either Oakland KOAK or Reno KREV.

GOES-16 Upper-level (6.2 µm, top left), Mid-level (6.9 µm, top right), Low-level (7.3 µm, bottom left) Water Vapor and "Red" Visible with Derived Motion Winds (0.64 µm, bottom right) [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm, top left), Mid-level (6.9 µm, top right), Low-level (7.3 µm, bottom left) Water Vapor images and “Red” Visible (0.64 µm, bottom right) images with Derived Motion Winds [click to play MP4 animation]

===== 07 August Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 µm and 2.25 µm) and Shortwave Infrared (3.75 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 µm and 2.25 µm) and Shortwave Infrared (3.75 µm) images [click to enlarge]

A comparison of NOAA-20 VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 µm and 2.25 µm) and Shortwave Infrared (3.75 µm) images (above; courtesy of William Straka, CIMSS) showed the nighttime glow and thermal signatures of the Mendocino Complex fires on 07 August 2018. As of 8:30am the fire had burned over 290,000 acres, becoming the largest wildfire on record in the state of California.

 

Severe thunderstorms in Arizona

August 2nd, 2018 |
Visible images from GOES-15 (0.63 µm, left), GOES-17 (0.64 µm, center) and GOES-16 (0.64 µm, right), with SPC storm reports plotted in red [click to play animation | MP4]

Visible images from GOES-15 (0.63 µm, left), GOES-17 (0.64 µm, center) and GOES-16 (0.64 µm, right), with SPC storm reports plotted in red [click to play animation | MP4]

* GOES-17 images shown here are preliminary and non-operational *

GOES-15 (GOES-West), GOES-17 and GOES-16 (GOES-East) Visible images (above) showed the development of thunderstorms which produced hail and damaging winds (SPC storm reports) in the Phoenix, Arizona area on 02 August 2018. The images are displayed in the native projection of each satellite (no re-mapping). Due to a Full Disk scan, GOES-15 mages were only available every 30 minutes at the beginning of this particular time period; images from GOES-17 were every 5 minutes; a GOES-16 Mesoscale Domain Sector provided images at 1-minute intervals.

The strong thunderstorm winds also produced significant blowing dust — winds gusted to 47 knots (54 mph) and visibility was reduced to 1/2 mile at Phoenix KPHX (below). Winds gusted to 53 knots (61 mph) and visibility fell to 1/4 mile at Chandler KCHD.

Time series of surface observations for Phoenix, Arizona [click to enlarge]

Time series of surface observations for Phoenix, Arizona [click to enlarge]



Southwest US monsoon convection: GOES-15 vs GOES-16

July 12th, 2018 |

GOES-15 Visible (0.63 µm, left) and GOES-16 Visible (0.64 µm, right) images [click to play MP4 animation]

GOES-15 Visible (0.63 µm, left) and GOES-16 “Red” Visible (0.64 µm, right) images [click to play MP4 animation]

GOES-15 (GOES-West) Visible (0.63 µm) and GOES-16 (GOES-East) “Red” Visible (0.64 µm) images — displayed in the native projection of each satellite, and centered on Las Vegas, Nevada — are shown above, depicting the development of deep convection across parts of the Desert Southwest on 12 July 2018. While the GOES-15 satellite was in Rapid Scan Operations mode (providing 2 extra images nearly every hour, at :11 and :41), a GOES-16 Mesoscale Sector was providing images at 1-minute intervals. Numerous flash flood watches, warnings and advisories were issued by NWS Las Vegas during the course of the day as some of the storms produced heavy rainfall (with as much as 0.75 inch at Cal Nev Ari and 0.61 inch at Needles, California KEED).

Note that the GOES-15 Visible images do not appear as bright as those from GOES-16 — prior to the GOES-R Series of satellites, the performance of visible detectors degraded over time, leading to imagery that appeared more dim as the Imager instrument aged. Visible detectors on the new ABI instrument benefit from on-orbit calibration to remedy this type of degradation.

The corresponding GOES-15 Infrared Window (10.7 µm) and GOES-16 “Clean” Infrared Window (10.3 µm) images (below) revealed cloud-top infrared brightness temperatures around -70ºC (black enhancement) associated with some the stronger thunderstorms; this was the tropopause temperature at an altitude of 16.7 km / 48,300 feet on 00 UTC Las Vegas rawinsonde data. The improvement in spatial resolution from 4 km (at satellite sub-point) with GOES-15 to 2 km with GOES-16 is very apparent — even though the satellite viewing angle is about 10 degrees higher for GOES-16 than it is for GOES-15.

GOES-15 Infrared Window (10.7 µm, left) and GOES-16 "Clean" Infrared Window (10.3 µm, right) images [click to play MP4 animation]

GOES-15 Infrared Window (10.7 µm, left) and GOES-16 “Clean” Infrared Window (10.3 µm, right) images [click to play MP4 animation]

Higher spatial resolution Infrared Window images from Terra/Aqua MODIS and Suomi NPP VIIRS (below) revealed a cloud-top infrared brightness temperature as cold as -79ºC in far northwestern Arizona on the 2017 UTC VIIRS image.

Infrared Window images from Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) [click to enlarge]

Infrared Window images from Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) [click to enlarge]

In addition to heavy rainfall, some thunderstorm winds created areas of blowing sand:

The GOES-16 Total Precipitable Water derived product (below) showed that rich moisture was present across the Desert Southwest, fueling the development of the widespread convection. TPW values in the 1.0 to 2.0 inch range were seen over southeastern California, southwestern Arizona and far southern Nevada.

GOES-16 Total Precipitable Water derived product [click to play MP4 animation]

GOES-16 Total Precipitable Water derived product [click to play MP4 animation]

A 4-km resolution Terra/Aqua MODIS Total Precipitable Water product (below) indicated values in the 40-55 mm or 1.6-2.2 inch range.

Terra/Aqua MODIS Total Precipitable Water product [click to enlarge]

Terra/Aqua MODIS Total Precipitable Water product [click to enlarge]