Hurricane Force low off the US East Coast

April 2nd, 2019 |

GOES-16 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed a cluster of deep convection just to the north of the center of a rapidly-intensifying midlatitude cyclone (surface analyses) off the coast of North Carolina on 02 April 2019. In addition, convection was later seen developing along the north-south cloud band marking the leading edge of the cyclone’s cold front. The rapid deepening of this hurricane force low easily met the criteria of a bomb cyclone — its central pressure dropped 20 hPa in just 12 hours (from 1004 hPa at 18 UTC on 02 April to 984 hPa at 06 UTC on 03 April).

The primary convective cluster began to exhibit a large amount of lightning after 1830 UTC, as seen in plots of GOES-16 GLM Groups (below). To the east of this intensifying convection, one ship report at 18 UTC included winds from the east at 50 knots — in addition, a moderate to heavy shower of hail was being reported and their surface visibility was restricted to 1.25 miles (18 UTC surface analysis).

GOES-16 "Red" Visible (0.64 µm) images, with GLM Groups and surface wind gusts plotted in red [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with GLM Groups and surface wind gusts plotted in red [click to play animation | MP4

There were several factors pointing to the development of a sting jet with this storm, as discussed here and here. GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below) revealed distinct areas of warming/drying (darker shades of yellow to orange) that possibly highlighted rapidly-descending air associated with a sting jet (for example, on the 1946 UTC images).

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play animation | MP4]

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play animation | MP4]

After 23 UTC, GOES-16 “Clean” Infrared Window (10.3 µm) images (below) portrayed the formation of a large eye-like feature indicative of a warm seclusion (00 UTC surface analysis). Lightning activity remained very high during that time.

GOES-16 "Clean" Infrared Window (10.3 µm) images [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play animation | MP4]


A comparison between 1-km resolution Terra MODIS Infrared Window (11.0 µm) imagery at 0237 UTC with an Aqua MODIS Sea Surface Temperature product at 1755 UTC on the following afternoon (below) showed that the storm intensified and formed the large eye-like feature over the northern portion of the axis of warmest Gulf Stream water (where SST values were in the 70-76ºF range).

Terra and Aqua MODIS Infrared Window (11.0 µm) images from 0237 UTC and 0649 UTC, along with the Aqua MODIS Sea Surface Temperature product at 1755 UTC [click to enlarge]

Terra MODIS Infrared Window (11.0 µm) image at 0237 UTC, along with the 1755 UTC Aqua MODIS Sea Surface Temperature product [click to enlarge]

With a nighttime overpass of the NOAA-20 satellite at 0651 UTC, the eye-like feature was apparent in VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images (below). Although the Moon was in the Waning Crescent phase (at only 8% of Full), that illumination with the aid of airglow was sufficient to provide a useful “visible image at night” using the Day/Night Band; a streak of bright pixels was due to intense lightning activity within a line of thunderstorms just ahead of the cold front. Note: the NOAA-20 images are incorrectly labeled as Suomi NPP.

NOAA-20 VIIRS Infrared Window (11.45 µµ) and Day/Night Band (0.7 µm) images [click to enlarge]

NOAA-20 VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images, with an overlay of the 06 UTC surface analysis [click to enlarge]

Leave a Reply