Southwest US summer solstice: smoke, and solar panels

June 20th, 2016 |

 

Suomi NPP VIIRS Day/Night Band (0.7 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A nighttime comparison of Suomi NPP VIIRS Day/Night Band (0.7 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images at 0853 UTC on 20 June 2016 (above) revealed 2 key features of the large Cedar Fire that had been burning in eastern Arizona: (1) the fire “hot spot” signature (black to yellow to red pixels) on the Shortwave Infrared image, located about 20 miles southwest of Show Low (KSOW), and (2) an approximately 50-mile-wide pall of dense smoke aloft — illuminated by a nearly-full Moon — that had drifted westward then northwestward during the previous 24 hours and was centered northwest of Prescott (KPRC). Note that there was no signature of this smoke feature on the Infrared Window image, since smoke is effectively transparent to infrared radiation.

During the following afternoon hours, a toggle between 2117 UTC Aqua MODIS Near-Infrared “Cirrus detection” (1.61 µm), Visible (0.65 µm), Infrared Window (11.0 µm) and Topography images (below) showed that the smoke aloft had moved northward during the day and was over far northwestern Arizona and southwestern Utah. On the Visible image, the dense layer of smoke obscured the view of surface features that are normally seen on a cloud-free day, but the edges of the smoke feature were difficult or impossible to identify. However, the smoke feature was quite evident on the Near-Infrared “Cirrus detection” image — due to the fact that this spectral band (which will be on the GOES-R ABI instrument) is useful for detecting features composed of particles that are efficient scatterers of light (such as cirrus cloud ice crystals, airborne dust or volcanic ash, and in this case, smoke). As was seen in the VIIRS example above, there was no signature of the smoke on the Infrared Window image — the cooler (lighter gray) shades seen in that region were a result of higher terrain that exhibited cooler brightness temperatures due to more abundant vegetation.

Aqua MODIS Near-Infrared Cirrus (1.16 µm), Visible (0.65 µm), Infrared Window (11.0 µm), and Topography images [click to enlarge]

Aqua MODIS Near-Infrared Cirrus (1.61 µm), Visible (0.65 µm), Infrared Window (11.0 µm), and Topography images [click to enlarge]

An animation of GOES-15 (GOES-West) Visible (0.63 µm) images (below) showed the aforementioned Cedar Fire smoke in northwestern Arizona early in the day (highlighted by a favorable forward scattering sun-satellite geometry), and also showed the smaller smoke plume from the Reservoir Fire that had just begun burning northeast of Los Angeles. In addition, the brief appearance of bright white flashes across Southern California and extreme southern Nevada (as seen on the 1800, 1830, 1841 and 1845 UTC images) were a result of reflection of sunlight from large solar panel farms.

GOES-15 Visible (0.63 µm) images [click to play animation]

GOES-15 Visible (0.63 µm) images [click to play animation]

 

Leave a Reply