Derecho from the Midwest to the Mid-South

June 28th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play MP4 animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed a large Mesoscale Convective System (MCS) which produced a long-lived path of large hail and damaging winds from eastern Nebraska to western Tennessee on 28 June 2018. The length and duration of damaging wind events (SPC storm reports) qualified this event as a derecho.

The corresponding GOES-16 “Clean” Infrared Window (10.3 µm) images (below) revealed cold cloud-top infrared brightness temperatures that occasionally reached -80ºC (violet enhancement).

GOES-16 "Clean" Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

A closer look at the MCS using 375-meter resolution Suomi NPP VIIRS Infrared Window (11.45 µm) images (below) showed cloud-top gravity waves on the 1844 UTC image, propagating radially outward from the primary area of overshooting tops; cloud-top infrared brightness temperatures were as cold as -86ºC (violet enhancement).

Suomi NPP VIIRS Infrared Window (11.45 µm) images, with SPC storm reports plotted during the 3 hours preceding the 1844 UTC image [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) images, with plots of SPC storm reports during the 3 hours preceding the 1844 UTC image [click to enlarge]

Midwest derecho

July 19th, 2017 |

GOES-16 Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

GOES-16 Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

A long-lived mesoscale convective system (MCS) known as a derecho produced swath of damaging winds — as well as some large hail and a couple of tornadoes — that stretched from north-central South Dakota to northwestern Indiana on 19 July 2017 (SPC storm reports | TWC summary). GOES-16 “Clean” Infrared Window (10.3 µm) images (above) showed the southeastward propagation of the storm system.

Closer views of the early stages of the derecho as it moved across central and eastern South Dakota are shown below, using GOES-16 “Red” Visible (0.64 µm) and Infrared Window (10.3 µm) images. The highest measured wind gust was 100 mph near Polo (1522 UTC), with 83 mph recorded at Huron (1636 and 1730 UTC). Hail of 2.50 inches in diameter fell near Cavour (1703 UTC). Note that most of the severe reports were in the general vicinity of the persistent cold overshooting top (black to white enhancement) seen on the Infrared imagery; due to parallax, the apparent location of this storm-top feature was shifted slightly north of its true location.

GOES-16 Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play MP4 animation]

GOES-16 Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play MP4 animation]

GOES-16 Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

GOES-16 Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

1-km resolution Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images at (below) showed the MCS over the Huron (KHON) area at 1656 UTC. Since there is minimal parallax associated with polar-orbiter satellite imagery, the cluster of SPC storm reports (occurring within +/- 30 minutes of the time of the MODIS image) was much closer to the cold (-70 to -73º C, lighter gray enhancement) overshooting top. Another feature of interest seen on the Infrared image was a “warm trench” (exhibiting brightness temperatures as warm as -60º C, red enhancement) immediately surrounding the cold overshooting top — perhaps a result of compensating subsidence?

Terra MODIS Visible and Infrared Window (11.0 µm) images, with SPC storm reports [click to enlarge]

Terra MODIS Visible and Infrared Window (11.0 µm) images, with SPC storm reports [click to enlarge]

375-meter resolution Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images at 1846 UTC (below) provided a detailed view of the MCS as it was centered near the South Dakota / Minnesota border. The coldest cloud-top IR brightness temperature was -83º C (violet enhancement).

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with SPC storm reports [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with SPC storm reports [click to enlarge]

The Memphis Derecho of July 22 2003

July 31st, 2013 |
GOES-12 10.7 µm IR imagery (Click Image to play animation)

GOES-12 10.7 µm IR imagery (Click Image to play animation)

On the morning of July 22, 2003, a strong derecho moved through metropolitan Memphis, TN, with winds exceeding hurricane-force. The most significant impact of this storm was a loss of power caused in part by the many trees that were downed by the winds. The Storm Report for the day from the Storm Prediction Center shows a cluster of wind reports in and around Memphis and Shelby County. The National Weather Service office in Memphis produced a report on this event that includes radar imagery and a discussion of surface and upper-air observations. More information on this derecho is here. What do satellite data show for this event?

The animation of 10.7 µm imagery, above, shows the development of convection in southeast Kansas and northwest Arkansas that then moves eastward into the mid-South, hitting Memphis around 1200 UTC. Several overshooting tops are evident as the storms pass near Memphis, with the coldest brightness temperatures at 196K! Past derechosdiscussed on this blog (such as the one that hit the East Coast in 2012) were characterized by a channel of moisture and instability aligned with the storm motion, allowing the propagating thunderstorm complex access to a rich source of moisture and instability. This event in 2003 was no different. GOES-12 Sounder retrievals — during that year, 3×3 fields-of-view were used (versus single pixels now) — of Total Precipitable Water, Convective Available Potential Energy (CAPE) and Lifted Index (LI), show abundant moisture and instability aligned west-to-east across northern Arkansas. CAPE values exceeded 3000 J/kg, Total Precipitable Water was greater than 2 inches, and Lifted Indices were near -10.

GOES-10/GOES-12 Sounder-Derived Total Precipitable Water (3x3 Field of View) (Click Image to play animation)

GOES-10/GOES-12 Sounder-Derived Total Precipitable Water (3×3 Field of View) (Click Image to play animation)

GOES-10/GOES-12 Sounder-Derived Convective Available Potential Energy (CAPE) (3x3 Field of View) (Click Image to play animation)

GOES-10/GOES-12 Sounder-Derived Convective Available Potential Energy (CAPE) (3×3 Field of View) (Click Image to play animation)

GOES-10/GOES-12 Sounder-Derived Lifted Index (3x3 Field of View) (Click Image to play animation)

GOES-10/GOES-12 Sounder-Derived Lifted Index (3×3 Field of View) (Click Image to play animation)

GOES-12 Visible Imagery (Click Image to play animation)

GOES-12 Visible Imagery (Click Image to play animation)

Visible imagery, above, from GOES-12 shows the convection continuing to develop as it moves across the Mississippi River into Memphis. Several Overshooting tops are evident, as well as parallel cloud lines at the cirrus level that are usually associated with turbulence. GOES-10, as GOES-West, was also able to capture the convection as it moved through Memphis (below).

GOES-10 Visible Imagery (Click Image to play animation)

GOES-10 Visible Imagery (Click Image to play animation)

GOES-14 Super Rapid Scan (1-minute interval) images of eastern US low-end derecho

June 13th, 2013 |
GOES-14 0.63 µm visible channel images (click image to play animation)

GOES-14 0.63 µm visible channel images (click image to play animation)

For the second consecutive day, the GOES-14 satellite was placed into Super Rapid Scan Operations for GOES-R (SRSOR) mode to monitor the ongoing severe bow echo/low-end derecho event that was moving across the eastern US on 13 June 2013. GOES-14 0.63 µm visible channel images at 1-minute intervals (above; click image to play animation; also available as a QuickTime movie) revealed the emergence of a well-defined shelf cloud across Virginia and North Carolina, which marked the leading edge of the gust front moving out ahead of the line of severe thunderstorms. According to the SPC storm reports, these storms produced a wide swath of damaging winds (with gusts as high as 78 mph in Virginia), along with some large hail (up to 2.75 inches in diameter in Maryland).