

The ABI on the GOES-R series

Timothy J. Schmit NOAA/NESDIS/Satellite Applications and Research Advanced Satellite Products Branch (ASPB) James J. Gurka GOES-R Program Office Mathew M. Gunshor, Jun Li CIMSS, Madison, WI

5th GOES Users' Conference New Orleans, LA January 23, 2008

Overview

- GOES-13
- ABI (Advanced Baseline Imager)
 - Temporal
 - Spectral
 - Spatial
 - Radiometric
- Select Products
- ABI for continuity of current Sounder products
- Summary
- More information

GOES-13

GOES-13/O/P will have similar instruments to GOES-8-12, but on a different spacecraft bus.

Spring and fall eclipse outages will be avoided by larger onboard batteries.

Improved navigation

Improved radiometrics

GOES-12/13 (During eclipse)

Upper Peninsula MI Fires

Visible

Shortwave Window

Ice Floes

The Advanced Baseline Imager:					
	ABI	Current			
Spectral Coverage	16 bands	5 bands			
Spatial resolution 0.64 μm Visible Other Visible/near-IR Bands (>2 μm)	0.5 km 1.0 km 2 km	Approx. 1 km n/a Approx. 4 km			
Spatial coverage Full disk CONUS Mesoscale	4 per hour 12 per hour Every 30 sec	Scheduled (3 hrly) ~4 per hour n/a			
Visible (reflective bands) On-orbit calibration	Yes	No			

Full Disk with stepped-edge

The ABI instrument can scan west-to-east OR east-to-west, the alternating 9 pattern 'swath-to-swath' of the GOES-I/N series will not be continued.

Approximate number of ABI pixels

Current GOES is approximately 2705 x 5209 for the FD IR

Input Inform	0.5 km	1 km	2 km			
Full disk diameter	17.76	deg	22141	11070	5535	pixels
CONUS height	4.8129	deg	6000	3000	1500	pixels
CONUS width	8.0215	deg	10000	5000	2500	pixels
Meso height/width	1.6043	deg	2000	1000	500	pixels

Figure courtesy of ITT Industries

Imagery Requirement

 The distributed, calibrated and navigationally corrected image data will be rectified to a fixed grid. The grid is defined relative to an ideal geostationary satellite viewpoint.

The image pixels will have an angular separation of:

- 14 microradians (0.5 km) in the 0.64 um channel;
- 28 microradians (1 km) in the 0.47, 0.86 and 1.61 um channel;
- 56 microradians (2 km) in all other channels.

ABI scans about 5 times faster than the current GOES imager

There are two anticipated scan modes for the ABI: - Full disk images every 15 minutes + 5 min CONUS images + mesoscale. or - Full disk every 5 minutes.

ABI can offer Continental US images every 5 minutes for routine monitoring of a wide range of events (storms, dust, clouds, fires, winds, etc). This is every 15 or 30 minutes with the current GOES in routine mode.¹³

SAMPLE

Mesoscale images every 30 seconds for rapidly changing phenomena (thunderstorms, hurricanes, fires, etc). Current GOES can not offer these rapid scans while still scanning other important regions

"Franklin"

Imager Coverage in ~30 minutes

	Current Imager	Future Imager
	(Rapid Scan mode)	("Flex" mode)
Full Disk	0	2
Northern Hemi	1	1
CONUS	3	6
Mesoscale	0	60

Full Disk

N. Hemisphere

CONUS

Mesoscale

GOES-10

GOES-10 13:03 UTC 28 AUG 06 VISIBLE UW/SSEC

15-min time resolution "loop"

1-min time resolution loop

Ernesto – Special GOES-10 data

ABI Visible/Near-IR Bands

Future GOES imager (ABI) band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use
I	0.45–0.49	0.47	I	Daytime aerosol over land, coastal water mapping
2	0.59–0.69	0.64	0.5	Daytime clouds fog, inso- lation, winds
3	0.846–0.885	0.865	I	Daytime vegetation/burn scar and aerosol over water, winds
4	1.371-1.386	1.378	2	Daytime cirrus cloud
5	1.58–1.64	1.61	I	Daytime cloud-top phase and particle size, snow
6	2.225–2.275	2.25	2	Daytime land/cloud properties, particle size, vegetation, snow

ABI IR Bands

7	3.80-4.00	3.90	2	Surface and cloud, fog at night, fire, winds
8	5.77–6.6	6.19	2	High-level atmospheric water vapor, winds, rainfall
9	6.75–7.15	6.95	2	Midlevel atmospheric water vapor, winds, rainfall
10	7.24–7.44	7.34	2	Lower-level water vapor, winds, and SO ₂
П	8.3–8.7	8.5	2	Total water for stability, cloud phase, dust, SO ₂ rainfall
12	9.42–9.8	9.61	2	Total ozone, turbulence, and winds
13	10.1-10.6	10.35	2	Surface and cloud
14	10.8–11.6	11.2	2	lmagery, SST, clouds, rainfall
15	11.8–12.8	12.3	2	Total water, ash, and SST
16	13.0-13.6	13.3	2	Air temperature, cloud heights and amounts

Visible and near-IR channels on the ABI

The ABI visible and near-IR bands have many uses.

While there are differences, there are also many similarities for the spectral bands on MET-8 and the Advanced Baseline Imager (ABI). Both the MET-8 and ABI have many more bands than the current operational GOES imagers.

ABI to Imager Noise Comparison

	Spec	Spec/":	2"			Measu	red
ABI	NEdT	NEdT		Band	Image	G-12	Spec
2.0	0.1	0.05		2	3.0	0.12	
5.9	0.1	0.05		2	5.9	0.15	1.4
6.185	0.1	0.05					
6.95	0.1	0.05		3	6.5 / 6.7	0.15	1
7.34	0.1	0.05		U			
8.5	0.1	0.05					
9.61	0.1	0.05					
10.35	0.1	0.05					
11.2	0.1	0.05		4	10.7	0.11	0.35
12.3	0.1	0.05		5	12	No band	0.35
13.3	0.3	0.075		6	13.3	0.19	0.32
from MRD				from GOE	S-12 Tech F	Report	

When taking into account the ABI improved FOV size, **the expected noise is less** (by 2-3 times) than the current GOES Imagers. A factor of 2 was used (square₂ so t 4) for most Imager bands.

Aerosol/Dust Optical Thickness Retrieval Results from SEVIRI@EUMETSAT

Figure courtesy of J. Li and P. Zhang

GOES-R and GOES-I/M Simulations of Southern California Fires

 Brightness Temperature (K)

 ■ 260-280
 ■ 280-300
 ■ 300-320
 ■ 320-340
 ■ 340-360
 ■ 360-380
 ■ 380-400

27

Three-color composite (0.64, 1.6 and 11 μm) shows the low cloud over the snow and the water versus ice clouds.

Nocturnal Fog/Stratus Over the Northern Plains

"ABI" 4 minus 11 µm Difference

ABI image (from MODIS) shows greater detail in structure of fog?

Nocturnal Fog/Stratus Over the Northern Plains

GOES-10 4 minus 11 µm Difference

ABI image (from MODIS) shows greater detail in structure of fog.

Volcanic Ash Plume: 11-12 and 8.5-11 µm images

One day after the Mt. Cleveland eruption 20 February 2001, 8:45 UTC

UW/CIMSS

GOES-R ABI will detect SO2 plumes Water Vapor Band Difference convolved from AIRS data sees SO₂ plume from Montserrat Island, West Indies

Current GOES Imager can not detect SO₂

SEVIRI data from EUMETSAT

of J. Li and X. Jin, CIMSS Figure courtesy

Synthetic 2 km GOES-R ABI WV Imagery

• Waves are evident in all three ~2 km ABI WV channels, with wave spatial patterns being far clearer than current GOES-12

• 3 ABI WV channels could provide information on mountain wave amplitude, as they detect peak signal from differing heights

Satellite-derived winds

Satellite-derived winds will be improved with the ABI due to:

- higher spatial resolution (better edge detection)
- more frequent images (offers different time intervals)
- better cloud height detection (with multiple bands)
- new bands may allow new wind products
- better NEdT's
- better navigation/registration

Using satellite observations (MODIS, MET-8 and AIRS) to simulate the ABI

ABI Proxy from MODIS, MSG, and AIRS on 2004 April 11

Similar bands on the GOES-12 Imager

ABI Proxy from MODIS, MSG, and AIRS on 2004 April 11

The additional bands on the Advanced Baseline Imager (ABI) allow new or improved products

Aerosols	Clouds, etc	Vegetation	Cirrus Clouds
"0.47 μm"	"0.64 μm"	"0.86 μm"	"1.38 μm"
Snow, Cloud phase	Particle size	Fog, Fires, clouds, etc	Water Vapor, Precip.
"1.61 μm"	"2.26 μm"	"3.9 μm"	"6.19 μm"
Water Vapor	WV, Upper- level SO2	Vol. Ash, Cloud phase	Total Ozone
"6.95 μm"	"7.34 μm"	"8.5 μm"	"9.61 μm"
Surface features, clouds "10.35 μm"	Clouds, Precip., SST "11.2 μm"	Low-level Moisture "12.3 µm"	Cloud heights 40 "13.3 µm"

ABI band 14 (11.2 µm) BT (K) 2005-06-04

n

210 230

250

270

290

310

June 4, 2005 23:00 UTC

ABI band 2 (0.64 µm) reflectance 2005-06-04

ABI band 8 (6.19 µm) BT (K) 2005-06-04

ABI bands via NWP simulation (CIMSS AWG Proxy Team)

ABI band data for 2005 June 04 22:00 UTC

ABI bands via NWP simulation (CIMSS AWG Proxy Team)

ABI band data for 2005 June 04 22:00 UTC

Current attributes: defined to be 1

Improved attributes with the Future GOES Imagers

NOAA/NESDIS ASPB

Approximate spectral and spatial resolutions of US GOES Imagers

	~ Band Center (um)	GOES-6/7	GOES-8/11	GOES-12/N	GOES-O/P	GOES-R+		
10le	0.47							
VIS	0.64					۰		
	0.86							
IL-IL	1.6	Bo	Por size represents detector size					
Nea	1.38	<i>D0</i> .	x size repres		SIZE			
	2.2							
	3.9		×	×	×			
	6.2							
	6.5/6.7/	14km	8	4	×	2		
đ	7.3	"MSI mode"						
rarec	8.5							
TUT	9.7							
	10.35							
	11.2	<u>,</u>	×		×			
	12.3		×					
	13.3				×			

Operational Products from the current GOES Sounder and how the ABI measurements, along with ancillary data, can produce legacy products.

Product	Temporal/Latency	Spatial	Accuracy	Comments
Radiances	ABI ~ 20X faster	Comparable (when averaged)	Comparable for moisture information	Only 1 CO_2 band on ABI (5 bands on Sounder)
TPW	ABI ~ 20X faster	Comparable (when averaged)	Sounder more precise	ABI product quality helped with model info
Lifted Index	ABI ~ 20X faster	Comparable (when averaged)	Sounder more precise	ABI product quality helped with model info
Skin Temperature	ABI ~ 20X faster	Comparable (when averaged)	Comparable	ABI has extra window band
Profiles	ABI ~ 20X faster	Comparable (when averaged)	Sounder more precise	Worse upper-level T and lower-level moisture
Clouds	ABI ~ 20X faster	ABI Finer	Sounder more precise for cloud height	Current Sounder with more CO_2 bands gives a better height
Moisture winds	ABI ~ 20X faster	ABI Finer	Comparable	-

GOES-R ABI Weighting Functions

ABI has 1 CO₂ band, so upper-level temperature will be ₄₈ degraded compared to the current sounder

GOES-13 Sounder WFs

The GOES-N sounder has 5 CO₂ bands, more Shortwave 49 bands than ABI

Profile Information Content

Example spectral coverage

Current GOES Sounder spectral coverage and that possible from an advanced high-spectral sounder. The broad-band nature of the current GOES limits the vertical resolution.

ABI to Sounder Noise Comparison

	Spec	Spec/4		Measu	ed	
ABI	NEdR	NEdR	Sounder	G-12	Spec	
			3.74	0.00094	0.004	
3.9	0.004	0.001	3.98	0.0022	0.008	
			4.13	0.0024	0.008	
			4.46	0.0066	0.013	
			4.52	0.0062	0.013	
6.185	0.1	0.025	4.57	0.0062	0.013	
6.95	0.09	0.0225	6.51	0.11	0.15	
7.34	0.055	0.01375	7.02	0.059	0.12	
8.5	0.13	0.0325	7.43	0.099	0.16	
9.61	0.154	0.0385	9.71	0.14	0.33	
10.35	0.17	0.0425	11.03	0.11	0.16	
11.2	0.17	0.0425	12.02	0.11	0.16	
12.3	0.18	0.045	12.66	0.14	0.25	
13.3	0.53	0.1325	13.37	0.34	0.44	
			13.64	0.39	0.45	
			14.06	0.45	0.54	
			14.37	0.61	0.58	
			14.71	0.77	0.66	
from MRD			from GOE <u>S-1</u>	2 Tech Rep	ort	

When taking into account the ABI improved FOV size, the expected noise is less (by 2-5 times) than the current GOES sounders. A factor of 4 was used, the sqrt of 16.

Summary

The ABI improves over the current GOES Imager the **spectral, temporal, spatial** and **radiometric** performance.

The great amount of information from the GOES-R will offer a continuation of current products (precipitation, atmospheric motion vectors, SST, radiances, hurricane intensity, dust, fog, smoke, fires, clouds, etc) and new products (upper-level SO₂, vegetation, cloud micro-physics, atmospheric waves, etc).

The **potential benefits of ABI** on the GOES-R series beyond the benefits of the current system are **more than \$4B**. (Thursday talk: Potential Socio-Economic Benefits of GOES-R)

The ABI applications relate to: weather, ocean, climate, cryosphere, land, and hazards, etc.

SST (E. Maturi)

Ice concentration [%] (X. Wang)

NDVI (P. Romanov)

OLR (H. Lee)

Icing Threat (W. Smith, Jr.)

More information

Poster session (this conference)

GOES-13 NOAA Tech Report #125:

http://rammb.cira.colostate.edu/projects/goes_n/

GOES and NASA:

- http://goespoes.gsfc.nasa.gov/goes/index.html
- http://goes.gsfc.nasa.gov/text/goes.databookn.html

ABI Research Home page:

- http://cimss.ssec.wisc.edu/goes/abi/
- ftp://ftp.ssec.wisc.edu/ABI/SRF
- AMS BAMS Article on the ABI (Aug. 2005)

INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R

inoday J. Schnet, Madew M. Ginerada, W. Pala Meneza, Janez J. Gurka, Jun Li and A. Scott Bacamedr

The ABI will begin a new era in U.S. environmental remote sensing with more spe bands, faster imaging, and higher spatial resolution than the current imager.

In Z-Princed Shardhar Imagirz (ZHI) is blang, and the second Shardhar Imagirz (ZHI) is blang, and the second Shardhar Imagirz (ZHI) is blang. The second S

a metrical materia transmission of the coverage parts. All has is special to making the material matter to the -4, -4, -1,

AMERICAN METEOROLOGICAL SOCIETY

ABI Clear-sky Weighting Functions

😢 A	ABI Weighting Function Examples CIMSS - Mozilla Firefox								
Eile	<u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ool	s <u>H</u> elp				$\langle \rangle$			
	• 🗼 • 🥑 🐼 🏠 🗋 http:/	/cimss.ssec.wisc.edu/goes/wf/ABI/			▼ ▶ G ▼ abi weighting function cimss	Q			
	Satellite Instrument / Band Band 7 (3.9 µm) Band 8 (6.19 µm) Band 9 (6.95 µm) Band 10 (7.34 µm) Band 10 (7.34 µm) Band 11 (8.5 µm) Band 12 (9.61 µm) Band 12 (9.61 µm) Band 13 (10.35 µm) Band 14 (11.2 µm) Band 15 (12.3 µm) Select air j Gicar air	ABI Weigh	ting Funct Zenith Angle 0° 5° 10° 15° 20° 25° 25° 30° 25° 30° 25° 30° 55° 40° 55° 55° 60° 55° 55° 60° 55° 70° Select all Clear all	Column Moisture % 10% 20% 30% 40% 50% 60% 0% 90% 90% 2100% Select all Clear all	Skin Temperature Adjustment				
1	Number of possible images sel	ected: 2 (some images ● Panel ● ⁻	may be unavaila Toggle ● Fac	able) der <u>Go Reset</u>		~			

http://cimss.ssec.wisc.edu/goes/wf/ABI/

Acknowledgements

- The authors would like to thank the entire GOES-R team; both within the government, industry and academia. W. P. Menzel and Scott Bachmeier of CIMSS are especially thanked.
- The views, opinions, and findings contained in this presentation are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy, or decision.

