Review of Remote Sensing Fundamentals Allen Huang

Cooperative Institute for Meteorological Satellite Studies Space Science & Engineering Center University of Wisconsin-Madison, USA

Topics: *Visible & Infrared Measurement Principal *Radiation and the Planck Function *Infrared Radiative Transfer Equation

Selected Material Provided

by Bill Smith, Paul Menzel, Paolo Antonelli, Steve Miller & Gerald van der Grijn

MODIS direct broadcast data for enhanced forecasting and real-time environmental decision making IGARSS 2009 MODIS DB Short Course 7-10 July 2009, Cape Town, South Africa <u>http://www.igarss09.org/SC04.asp</u>

Earth System Energy Balance

Radiative Energy Balance

Remote Sensing of Natural Radiation

Visible & Near IR (Reflective Bands)

Infrared (IR) (Emissive Bands)

What do satellites actually measure ?

They measure TEMPERATURE, HUMIDITY, WIND, TRACE GASES, CLOUDS, AEROSOLS, OTHERS..., indirectly!

Instead, satellite observations are obtained using remote sensing techniques based on measurements of <u>electromagnetic radiation</u>

Electromagnetic Radiation

Every object with a temperature larger than 0 K emits electromagnetic radiation. Electromagnetic radiation therefore extends over a wide range of energies and wavelengths. The distribution of all radiant energies can be plotted in a chart known as the *electromagnetic spectrum*.

The Electromagnetic (EM) Spectrum

Remote sensing uses radiant energy that is reflected and emitted from Earth at various "wavelengths" of the electromagnetic spectrum

Our eyes are sensitive to the visible portion of the EM spectrum

Electromagnetic Radiation

In the earth's atmosphere, the radiation is partly to completely transmitted at some wavelengths; at others those photons are variably absorbed by interaction with air molecules.

Most remote sensing instruments operate in one of these windows by making their measurements tuned to specific frequencies that pass through the atmosphere. Some sensors, especially those on meteorological satellites, directly measure absorption phenomena.

UV, Visible and Near-IR and IR and Far-IR

MODIS Visible and Near-infrared Bands

MODIS Reflected Solar Bands

Primary Use	Band	Bandwidth ¹	Spectral	Required
			Radiance ²	SNR ³
Land/Cloud/Aerosols Boundaries	1	620 - 670	21.8	128
	2	841 - 876	24.7	201
Land/Cloud/Aerosols Properties	3	459 - 479	35.3	243
	4	545 - 565	29.0	228
	5	1230 - 1250	5.4	74
	6	1628 - 1652	7.3	275
	7	2105 - 2155	1.0	110
Ocean Color/ Phytoplankton/ Biogeochemistry	8	405 - 420	44.9	880
	9	438 - 448	41.9	838
	10	483 - 493	32.1	802
	11	526 - 536	27.9	754
	12	546 - 556	21.0	750
	13	662 - 672	9.5	910
	14	673 - 683	8.7	1087
	15	743 - 753	10.2	586
	16	862 - 877	6.2	516
Atmospheric Water Vapor	17	890 - 920	10.0	167
	18	931 - 941	3.6	57
	19	915 - 965	15.0	250

Units: Wavelength (µm) vs. Wavenumber₎ (cm⁻¹)

wavelength λ (µm): distance between peaks wavenumber ν (Cm⁻¹): number of waves per unit distance

Radiation is characterized by wavelength λ and amplitude a^{13}

Terminology of radiant energy

Terminology of radiant energy

Definitions of Radiation

QUANTITY	SYMBOL	UNITS
Energy	dQ	Joules
Flux	dQ/dt	Joules/sec = Watts
Irradiance	dQ/dt/dA	Watts/meter ²
Monochromatic Irradiance	dQ/dt/dA/dλ	W/m ² /micron
maulance	or	
	dQ/dt/dA/dv	W/m ² /cm ⁻¹
Radiance	$dQ/dt/dA/d\lambda/d\Omega$	W/m ² /micron/ster
	or	
	$dQ/dt/dA/d\nu/d\Omega$	W/m ² /cm ⁻¹ /ster

Radiation is governed by Planck's Law

In wavelength:

 $B(\lambda,T) = c_1 / \{ \lambda^5 [e^{c_2 / \lambda T} - 1] \} (mW/m^2/ster/cm)$ where $\lambda =$ wavelength (cm) T = temperature of emitting surface (deg K) $c_1 = 1.191044 \times 10-8 (W/m^2/ster/cm^{-4})$ $c_2 = 1.438769 (cm deg K)$

In wavenumber:

 $B(v,T) = c_1 v^3 / [e^{c_2 v/T} - 1] \quad (mW/m^2/ster/cm^{-1})$ where v = # wavelengths in one centimeter (cm-1) T = temperature of emitting surface (deg K) $c_1 = 1.191044 \times 10-5 (mW/m^2/ster/cm^{-4})$ $c_2 = 1.438769 (cm deg K)$

Brightness temperature is uniquely related to radiance for a given wavelength by the Planck function.

Using wavelengths

	$c_2/\lambda T$				
Planck's Law	$B(\lambda,T) = c_1 / \lambda^5 / [e -1] (mW/m^2/ster/cm)$				
where	$\lambda =$ wavelengths in cm				
	T = temperature of emitting surface (deg K)				
	$c_1 = 1.191044 \text{ x } 10-5 \text{ (mW/m^2/ster/cm^{-4})}$				
	$c_2 = 1.438769 \text{ (cm deg K)}$				

Wien's Law $dB(\lambda_{max},T) / d\lambda = 0$ where $\lambda(max) = .2897/T$ indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers)with temperature increase. Note $B(\lambda_{max},T) \sim T^5$.

Stefan-Boltzmann Law $E = \pi \int B(\lambda,T) d\lambda = \sigma T^4$, where $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2/\text{deg}^4$.

states that irradiance of a black body (area under Planck curve) is proportional to T^4 .

Brightness Temperature

$$T = c_2 / \left[\lambda \ln(\frac{-1}{2} + 1) \right]$$
 is determined by inverting Planck function

$$\frac{\lambda^5 B_{\lambda}}{22}$$

Spectral Distribution of Energy Radiated from Blackbodies at Various Temperatures

Planck Tool

Using wavenumbers

Wien's Law $dB(v_{max},T) / dT = 0$ where v(max) = 1.95Tindicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers)with temperature increase. Note $B(v_{max},T) \sim T^{**}3$.

Stefan-Boltzmann Law $E = \pi \int B(v,T) dv = \sigma T^4$, where $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2/\text{deg}^4$.

states that irradiance of a black body (area under Planck curve) is proportional to T^4 .

Brightness Temperature

$$T = c_2 v / [ln(---+1)]$$
 is determined by inverting Planck function

$$B_v$$

Brightness temperature is uniquely related to radiance for a given wavelength by the Planck function.

wavelength [µm]

Using wavenumbers

$$c_2 v/T$$

B(v,T) = $c_1 v^3 / [e -1]$
(mW/m²/ster/cm⁻¹)

v(max in cm-1) = 1.95T

 $B(v_{max},T) \sim T^{**3}.$

$$E = \pi \int B(v,T) dv = \sigma T^{4},$$
o

$$T = c_2 v / [ln(-+1)]$$

B_v

Using wavelengths

 $c_{2}/\lambda T$ $B(\lambda,T) = c_{1}/\{ \lambda^{5} [e -1] \}$ $(mW/m^{2}/ster/\mu m)$

 λ (max in cm) = 0.2897/T

B(λ_{max} ,T) ~ T**5.

$$E = \pi \int B(\lambda, T) d\lambda = \sigma T^{4},$$

o
$$T = c_{2} / [\lambda \ln(\frac{c_{1}}{\lambda^{5} B_{\lambda}} + 1)]$$

Wavelength (μ m) vs. Wavenumber (Cm⁻¹)₂

Energy conservation: $\tau + a + r = 1$

$\tau + a + r = 1$ R, $r_{\lambda}R_{\lambda}$ Reflected **'ENERGY** $\mathbf{M} = \mathbf{A}_{\lambda} \mathbf{R}_{\lambda} = \mathbf{R}_{\lambda} - \mathbf{r}_{\lambda} \mathbf{R}_{\lambda} - \mathbf{\tau}_{\lambda} \mathbf{R}_{\lambda}$ CONSERVATION' Absorbed $\tau_{\lambda} R_{\lambda}$ **Transmitted** $\epsilon_{\lambda}B_{\lambda}(T)$

 $\mathbf{R}_{\lambda} = (\mathbf{a}_{\lambda} + \mathbf{r}_{\lambda} + \tau_{\lambda}) \mathbf{R}_{\lambda}$ $\tau + \mathbf{a} + \mathbf{r} = \mathbf{1}$

Temperature sensitivity

$dB/B = \alpha dT/T$

The Temperature Sensitivity α is the percentage change in radiance corresponding to a percentage change in temperature

Substituting the Planck Expression, the equation can be solved in α :

$$\alpha = c_2 v/T$$

The temperature sensitivity indicates the power to which the Planck radiance depends on temperature, since B proportional to T^{α} satisfies the equation. For infrared wavelengths,

 $\alpha = c_2 \nu / T = c_2 / \lambda T.$

Wavenumber	Typical Scene Temperature	Temperature Sensitivity	
900	300	4.32	
2500	300	11.99	

34

Temperature Sensitivity of $B(\lambda,T)$ for typical earth scene temperatures

B(10 um,T) / B(10 um,273) $\propto T^4$

B(10 um, 273) = 6.1 $B(10 \text{ um}, 200) = 0.9 \rightarrow 0.15$ $B(10 \text{ um}, 220) = 1.7 \rightarrow 0.28$ $B(10 \text{ um}, 240) = 3.0 \rightarrow 0.49$ $B(10 \text{ um}, 260) = 4.7 \rightarrow 0.77$ $B(10 \text{ um}, 280) = 7.0 \rightarrow 1.15$ $B(10 \text{ um}, 300) = 9.9 \rightarrow 1.62$

B(4 um,T) / B(4 um,273) $\propto T^{12}$

 $B(4 \text{ um}, 273) = 2.2 \times 10^{-1}$ B(4 um,200)= $1.8 \times 10^{-3} \rightarrow 0.0$ B(4 um,220)= 9.2 x $10^{-3} \rightarrow 0.0$ B(4 um,240)= $3.6 \times 10^{-2} \rightarrow 0.2$ B(4 um,260)= $1.1 \times 10^{-1} \rightarrow 0.5$ B(4 um,280)= $3.0 \times 10^{-1} \rightarrow 1.4$ B(4 um, 300) = 7.2 x $10^{-1} \rightarrow 3.3$

B(0.3 cm, T) / B(0.3 cm,273) \propto T

 $B(0.3 \text{ cm}, 273) = 2.55 \times 10^{-4}$ $B(0.3 \text{ cm}, 200) = 1.8 \rightarrow 0.7$ $B(0.3 \text{ cm}, 220) = 2.0 \rightarrow 0.78$ $B(0.3 \text{ cm}, 240) = 2.2 \rightarrow 0.86$ $B(0.3 \text{ cm}, 260) = 2.4 \rightarrow 0.94$ $B(0.3 \text{ cm}, 280) = 2.6 \rightarrow 1.02$ $B(0.3 \text{ cm}, 300) = 2.8 \rightarrow 1.1$

where

μ

 μ_0

¢

 \equiv

=

=

- absolute value of the cosine of the zenith angle $|\cos\theta|$
- cosine of the solar zenith angle $\cos\theta_0$
 - relative azimuth angle between the direction of propagation of the emerging radiation and the incident solar direction

Visible: Reflective Bands

Used to observe solar energy reflected by the Earth system in the:

- Visible between 0.4 and 0.7 µm
- NIR between 0.7 and 3 µm

About 99% of the energy observed between 0 and 4 µm is solar reflected energy

Only 1% is observed above 4 μm

Sensor Geometry Electronics Sensor FOV angle View angle θ θ Optics | h

Field Of View

Reflectance

- To properly compare different reflective channels we need to convert observed radiance into a target physical property
- In the visible and near infrared this is done through the ratio of the observed radiance divided by the incoming energy at the top of the atmosphere
- The physical quantity is the Reflectance i.e. the fraction of solar energy reflected by the observed target

Soil Vegetation

Snow

Ocean
Radiance observed In the Blue Band At 0.41 µm

- More than 75% of the Observed energy Over Ocean In the blue bands Is due to atmospheric Scattering.
- Less than 25% is due to Water
- Leaving Energy

Only High Clouds Are Visible

MODIS Thermal Emissive Bands

Primary Atmospheric	Band	Bandwidth ¹	T _{typical}	Radiance ²	NEΔT (K)	NEΔT (K)
Application			(K)	at T _{typical}	Specification	Predicted
Surface Temperature	20	3.660-3.840	300	0.45	0.05	0.05
	22	3.929-3.989	300	0.67	0.07	0.05
	23	4.020-4.080	300	0.79	0.07	0.05
Temperature profile	24	4.433-4.498	250	0.17	0.25	0.15
	25	4.482-4.549	275	0.59	0.25	0.10
Moisture profile	27	6.535-6.895	240	1.16	0.25	0.05
	28	7.175-7.475	250	2.18	0.25	0.05
	29	8.400-8.700	300	9.58	0.05	0.05
Ozone	30	9.580-9.880	250	3.69	0.25	0.05
Surface Temperature	31	10.780-11.280	300	9.55	0.05	0.05
	32	11.770-12.270	300	8.94	0.05	0.05
Temperature profile	33	13.185-13.485	260	4.52	0.25	0.15
	34	13.485-13.785	250	3.76	0.25	0.20
	35	13.785-14.085	240	3.11	0.25	0.25
	36	14.085-14.385	220	2.08	0.35	0.35

MODIS Infrared Spectral Bands

AIRS (Atmospheric Infrared Sounder) & MODIS – IR only

AIRS (Atmospheric Infrared Sounder) & MODIS

Emissive Bands

Used to observe terrestrial energy emitted by the Earth system in the IR between 4 and 15 µm

- About 99% of the energy observed in this range is emitted by the Earth
- Only 1% is observed below 4 µm
- At 4 µm the solar reflected energy can significantly affect the observations of the Earth emitted energy

Spectral Characteristics of Energy Sources and Sensing Systems

Observed Radiance at 4 micron

Observed Radiance at 11 micron

Brightness Temperature

- To properly compare different emissive channels we need to convert observed radiance into a target physical property
- In the Infrared this is done through the Planck function
- The physical quantity is the Brightness Temperature i.e. the Temperature of a black body emitting the observed radiance

nstrument: MODIS

Stronger over Sunglint

Observed BT at 11 micron

AIRS (Atmospheric Infrared Sounder) & MODIS – IR only

Real atmospheric weighting functions

atmosphere due to absorption.

Weighting Functions

Radiance measured by IR Sensor

RTE (no scattering) in LTE

$$R_{\nu} = \tau_{s\nu} \cdot \varepsilon_{s\nu} \cdot B_{\nu}(T_{s})$$

+ $\int_{p_{s}}^{0} B_{\nu}(T(p)) d\tau_{\nu}(p)$
- $\tau_{s\nu} \cdot r_{s\nu} \cdot \int_{p_{s}}^{0} B_{\nu}(T(p)) d\tau_{\nu}^{*}(p)$
+ $R_{\nu}^{sun} \cdot \cos(\theta) \cdot \tau_{s\nu}^{sun}(p_{s}) \cdot r_{\nu}^{sun}$

- ← Upwelling IR radiation from surface
- ← Upwelling IR radiation from atm. layers

73

← Reflected downwelling IR radiation

← Reflected solar radiation

R...radiance, *v*...wavenumber, *s*...surface, *p*...pressure, *sun*...solar,

- T...temperature, B...Planck function, *ɛ*...emissivity,
- τ ...level to space transmittance, θ ...local solar zenith angle
- *r*...reflectivity, with $r = (1 \varepsilon)/\pi$,
- τ^* ...level to surface (downwelling) transmittance [$\tau^* = \tau_0^2(p_s)/\tau_0(p)$]

Solar Effects (Day Vs. Night) on Infrared Measurements

Radiative Transfer Equation Summary

Radiative Transfer Equation in Infrared:

- models the propagation of terrestrial emitted energy through the atmosphere by
- absorption,
- scattering,
- emission and
- reflection

of gases, clouds, suspended particles, and surface.

The modeled radiances can be converted to brightness temperature and inverted to obtain atmospheric variables such as profile of temperature and water vapor profiles and clouds (height, fraction, optical thickness, size), aerosol/dust, surface temperature, and surface types etc.....

Summary

- Radiance is the Energy Flux (emitted and/or reflected by the Earth) which strikes the Detector Area at a given Spectral Wavelength (wavenumber) over a Solid Angle on the Earth;
- Reflectance is the fraction of solar energy reflected to space by the target;
- Given an observed radiance, the Brightness Temperature is the temperature, in Kelvin, of a blackbody that emits the observed radiance;
- Knowing the spectral reflective (Vis) and emissive (IR) properties (spectral signatures) of different targets it is possible to detect: clouds, cloud properties, vegetation, fires, ice and snow, ocean color, land and ocean surface temperature⁷⁶