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Remote Sensing of Natural Radiation
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What do satellites actually measure ?

They measure TEMPERATURE, HUMIDITY,
WIND, TRACE GASES, CLOUDS,

AEROSOLS, OTHERS..., indirectly!

Instead, satellite observations are
obtained using remote sensing
techniques based on measurements of
electromagnetic radiation




Electromagnetic Radiation

Every object with a temperature larger than 0 K emits electromagnetic radiation. Electromagnetic
radiation therefore extends over a wide range of energies and wavelengths. The distribution of all
radiant energies can be plotted in a chart known as the electromagnetic spectrum.
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The Electromagnetic (EM) Spectrum

Visible Light

Ultra
Radio waves Microwaves Infrared Violet A-rays Gamma
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Wavelengths

Remote sensing uses radiant energy that is reflected and
emitted from Earth at various “wavelengths’ of the
electromagnetic spectrum

Our eyes are sensitive to the visible portion of the EM
spectrum



Electromagnetic Radiation

In the earth’s atmosphere, the radiation is partly to completely transmitted at

some wavelengths; at others those photons are variably absorbed by interaction
with air molecules.
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Blue zones mark mlnlmal passage of incoming and/or outgoing radiation, whereas, white areas LEHGTH
denote atmospheric windows in which the radiation doesn’t interact much with air molecules.
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Most remote sensing instruments operate in one of these windows by making
their measurements tuned to specific frequencies that pass through the
atmosphere. Some sensors, especially those on meteorological satellites,
directly measure absorption phenomena.



UV, Visible and Near-IR and IR and Far-IR
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Transmittance

MODIS Visible and Near-infrared Bands
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MODIS Reflected Solar Bands

Primary Use Band Bandwidthi Spectral , Reql.:;ired
Radiance™ | SNR™
Land/Cloud/Aerosols|1 620-670 21.8 128
Boundaries 2 |841-876 247 201
Land/Cloud/Aerosols |3 459-479 353 243
Properties 4 545-565 |29.0 228
5 1230-12501|5.4 74
6 1628 - 16521|7.3 275
7 2105-215511.0 110
Ocean Color/ 8 405-420 449 880
Phytoplankton/ 9  |438-448 419 838
Biogeochemistry 1151433 493 321 802
11 526-536 |27.9 754
12 546-556 [21.0 750
13 662-672 |95 910
14 673-683 |8.7 1087
15 743-753 |10.2 586
16 1862-877 6.2 516
Atmospheric 17  1890-920 [10.0 167
Water Vapor 18  1931-941 3.6 57
19 915-965 |15.0 250
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Units: Wavelength (Um) vs. Wavenumber) (cm™)

wavelength A (LUm) : distance between peaks
wavenumber v <cm'1): number of waves per unit distance
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A (um) = 10,000/ v (cm™)

A=1/v
di=-1/v¢dv

Radiation is characterized by wavelength A and amplitude a'"



Terminology of radiant energy

Energy from
the Earth Atmosphere

over time Is

Flux

\Which strikes the detector area

Irradiance

\at a given wavelength interval

Monochromatic
Irradiance

\over a solid angle on the Earth

Radiance observed by
satellite radiometer

/\ is described by N

The Planck function
can be inverted to

\_ Brightness temperature /
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Terminology of radiant energy

Energy (Joules) from
the Earth Atmosphere

over time Is

Flux (Joules/sec or W)

\Which strikes the detector area

Irradiance (W/m?)

\at a given wavelength interval

Monochromatic
Irradiance (W/m2/micrometer)

\over a solid angle on the Earth

Radiance (W/m2/micromenter/ster) observed by
satellite radiometer

/\ Is described by N
The Planck function
can be inverted to

\_ Brightness temperature (K) /




Definitions of Radiation

QUANTITY SYMBOL UNITS
Energy dQ Joules
Flux dQ/dt Joules/sec = Watts
Irradiance dQ/dt/dA Watts/meter?
Monochromatic dQ/dt/dA/dr W/m?/micron
Irradiance
or
dQ/dt/dA/dv W/m?/cm-?
Radiance dQ/dt/dA/dA/dQ W/m?2/micron/ster
or
dQ/dt/dA/dv/dQ W/m?2/cm-Y/ster

17



Radiation is governed by Planck’s Law

In wavelength:
B(A,T) = ¢, /{A%][e*T-1] } (mW/m?/ster/cm)

where A = wavelength (cm)
T = temperature of emitting surface (deg K)
¢, =1.191044 x 10-8 (W/m?/ster/cm4)
c, = 1.438769 (cm deg K)

In wavenumber:
B(v,T) = ¢, v¥/[e®T-1] (mW/m?/ster/cm™t)

where v = # wavelengths in one centimeter (cm-1)
T = temperature of emitting surface (deg K)
¢, = 1.191044 x 10-5 (mW/m?/ster/cm)
c, = 1.438769 (cm deg K)

Brightness temperature is uniquely related to radiance for a given
wavelength by the Planck function.

21



Using wavelengths

C,/AT
Planck’s Law B(A,T) = c,/ 2/ [e 11 (mW/mé?/ster/cm)
where A = wavelengths in cm

T = temperature of emitting surface (deg K)
¢, = 1.191044 x 10-5 (mW/m?/ster/cm-4)
C, = 1.438769 (cm deg K)

Wien's Law dB(A a0 T) / dA = 0 where A(max) =.2897/T
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers)

with temperature increase. Note B(A,,,T) ~ T°.
o0
Stefan-Boltzmann Law E = 7| B(A,T) dh = oT4, where ¢ = 5.67 x 10-8 W/m2/deg4.

0
states that irradiance of a black body (area under Planck curve) is proportional to T4 .

Brightness Temperature
Cq
T = ¢,/ [A In(——+ 1)] is determined by inverting Planck functi02n2
A°B,y



Spectral radiant exitance, M, (Wm~% um~")

Spectral Distribution of Energy Radiated
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Using wavenumbers

Wien's Law AB(Vipao T) / dT = 0 where v(max) =1.95T
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers)

with temperature increase. Note B(v,,,, 1) ~ T**3.

o0

Stefan-Boltzmann Law E = =] B(v,T) dv = oT4, where o = 5.67 x 10-8 W/m2/deg?.

0
states that irradiance of a black body (area under Planck curve) is proportional to T4.

Brightness Temperature
c,V3
T = c,v/[In(——+ 1)] is determined by inverting Planck function
B

A%

Brightness temperature is uniquely related to radiance for a given

wavelength by the Planck function.
25
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Using wavenumbers Using wavelengths

C,VIT C, IAT
B(v,T) = ¢, v3/ [e -1] B(A,T) = c,{A>[e -1]1}
(mW/m?/ster/cm-1) (mW/m?/ster/um)
v(max incm-1) = 1.95T A(max incm) =0.2897/T
B(V, o T) ~ T**3. B(A o T) ~ T**5.
o0 o0
E = n/B(v,T)dv= oT4 E=n/BMLT)dA= oT4
0 0
C V3 Cy
T = c,v/[In( +1)] T = ¢,/[AIn( +1)]
B, A B,

Wavelength (Lm) vs. Wavenumber (cm™)



Energy conservation:t+a+r=1
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Temperature sensitivity

dB/B = adT/T

The Temperature Sensitivity o IS the percentage
change In radiance corresponding to a percentage
change In temperature

Substituting the Planck Expression, the equation can
be solved In o

a=C,yv/T

30
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The temperature sensitivity indicates the power to which the Planck radiance
depends on temperature, since B proportional to T satisfies the equation. For
infrared wavelengths,

a = C,vIT = C,/AT.

Wavenumber Typical Scene Temperature
Temperature Sensitivity
900 300 4.32

2500 300 11.99
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Temperature Sensitivity of B(A,T) for typical earth scene temperatures

B (A, T)/B (A, 273K)
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B(10 um,T)/B(10 um,273) oc T4

B(10 um,273)= 6
B(10 um,200)= 09—>o15 /
B(10 um,220)= 1.7 > 028 1 /
B(10 um,240)= 3.0 — 0.49

B(10 um,260)= 4.7 — 0.77 /
B(10 um,280)=7.0 > 1.15 | _
B(10 um,300)=

99 - 1.62 200 200

38



B(4 um,T) / B(4 um,273) oc T2

B(4 um,273)= 2.2 x 101

B(4 um,200)= 1.8 x 10 — 0.0

B(4 um,220)= 9.2 x 103 — 0.0

B(4 um,240)= 3.6 x 102 — 0.2

B(4 um,260)= 1.1 x 10" = 0.5

B(4 um,280)= 3.0 x 10" — 1.4
( )=

B(4 um,300)=7.2x 10" — 3.3

—/

200

300
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B(0.3cm, T)/B(0.3cm,273) oc T

B(0.3 cm,273)= 2.55 x 104
B(0.3 cm,200)=1.8 > 0.7

B(0.3 cm,220)= 2.0 —» 0.78
B(0.3 cm,240)= 2.2 —» 0.86
B(0.3 cm,260)= 2.4 — 0.94
B(0.3 cm,280)= 2.6 —» 1.02
B(0.3 cm,300)=2.8 —> 1.1

-

200

300
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Reflection and Transmission of Plane-Parallel
Layers

transmission

T(te Ky 65 Hos Gg) 0t

TCl(O, —H, (I))
R(ta, @o; Ky Hoy §) = TH =
where
o = absolute value of the cosine of the zenith angle |cos6|
Mo = cosine of the solar zenith angle cosf,
é6 = relative azimuth angle between the direction of propagation of the emerging

radiation and the incident solar direction
41



Visible: Reflective Bands

Used to observe solar energy reflected by the Earth
system in the:

* Visible between 0.4 and 0.7 uym
 NIR between 0.7 and 3 um

About 99% of the energy observed between 0 and 4 uym
is solar reflected energy

Only 1% is observed above 4 um

43



Sensor Geometry

Electronics

Sensor
~a
FOV angle

View angle \

Field Of View
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Reflectance

* To properly compare different reflective channels we
need to convert observed radiance into a target
physical property

 In the visible and near infrared this is done through
the ratio of the observed radiance divided by the
incoming energy at the top of the atmosphere

« The physical quantity is the Reflectance i.e. the
fraction of solar energy reflected by the observed
target

45
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Plot: Louis E. Keiner - Coastal Carolina University Data sources: USGS, NASA
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Transects of Reflectance
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spectral irradiance (relative value)
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Only High Clouds
Are Visible

‘Tools Settings
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Tools Settings
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‘Tools Settings

Band: 4 +  wavelength 0.56 um
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Multi-Channel Viewe
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MODIS Thermal Emissive Bands

Primary Atmospheric | Band | Bandwidth' | Typica |Radiance®| NEAT (K) | NEAT (K)
Application (K) at Tyypicar | Specification | Predicted
Surface Temperature | 20 | 3.660-3.840 300 0.45 0.05 0.05
22 | 3.929-3.989 300 0.67 0.07 0.05
23 | 4.020-4.080 300 0.79 0.07 0.05
Temperature profile 24 | 4.433-4.498 250 0.17 0.25 0.15
25 | 4.482-4.549 275 0.59 0.25 0.10
Moisture profile 27 | 6.535-6.895 240 1.16 0.25 0.05
28 | 71.175-7.475 250 2.18 0.25 0.05
29 | 8.400-8.700 300 9.58 0.05 0.05
Ozone 30 | 9.580-9.880 250 3.69 0.25 0.05
Surface Temperature | 31 |10.780-11.280 300 9.55 0.05 0.05
32 (11.770-12.270 300 8.94 0.05 0.05
Temperature profile 33 ]13.185-13.485[ 260 4.52 0.25 0.15
34 (13.485-13.785 250 3.76 0.25 0.20
35 |13.785-14.085 240 3.11 0.25 0.25
36 (14.085-14.385| 220 2.08 0.35 0.35
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MODIS Infrared Spectral Bands
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Presenter
Presentation Notes
This slide shows an observed infrared spectrum of the earth thermal emission of radiance to space.  The earth surface Planck blackbody - like radiation at 295 K is severely attenuated in some spectral regions.  Around the absorbing bands of the constituent gases of the atmosphere (CO2 at 4.3 and 15.0 um, H20 at 6.3 um, and O3 at 9.7 um), vertical profiles of atmospheric parameters can be derived.  Sampling in the spectral region at the center of the absorption band yields radiation from the upper levels of the atmosphere (e.g. radiation from below has already been absorbed by the atmospheric gas); sampling in spectral regions away from the center of the absorption band yields radiation from successively lower levels of the atmosphere.  Away from the absorption band are the windows to the bottom of the atmosphere. Surface temperatures of 296 K are evident in the 11 micron window region of the spectrum and tropopause emissions of 220 K in the 15 micron absorption band.  As the spectral region moves toward the center of the CO2 absorption band, the radiation temperature decreases due to the decrease of temperature with altitude in the lower atmosphere.

IR remote sensing (e.g. HIRS and GOES Sounder) currently covers the portion of the spectrum that extends from around 3 microns out to about 15 microns. Each measurement from a given field of view (spatial element) has a continuous spectrum that may be used to analyze the earth surface and atmosphere.  Until recently, we have used “chunks” of the spectrum (channels over selected wavelengths) for our analysis. In the near future, we will be able to take advantage of the very high spectral resolution information contained within the 3-15 micron portion of the spectrum.  From the polar orbiting satellites, horizontal resolutions on the order of  10 kilometers will be available, and depending on the year, we may see views over the same area as frequently as once every 4 hours (assuming 3 polar satellites with interferometers).  With future geostationary interferometers, it may be possible to view at 4 kilometer resolution with a repeat frequency of once every 5 minutes to once an hour, depending on the area scanned and spectral resolution and signal to noise required for given applications. 
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Emissive Bands

Used to observe terrestrial energy emitted by the Earth
system in the IR between 4 and 15 uym

« About 99% of the energy observed in this range is
emitted by the Earth

* Only 1% is observed below 4 um

« At 4 um the solar reflected energy can significantly
affect the observations of the Earth emitted energy
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Spectral Characteristics of Energy Sources and Sensing Systems
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Observed Radiance
at 4 micron
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Brightness Temperature

« To properly compare different emissive
channels we need to convert observed
radiance into a target physical property

* In the Infrared this is done through the Planck
function

* The physical quantity is the Brightness
Temperature i.e. the Temperature of a black
body emitting the observed radiance
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Observed BT
at 4 micron

Tools Settings

Multi-Channel Viewer

Window Channel: b (2T var ;33 -
olittle atmospheric absorption < J 5> SJJ
surface features clearly visible ¢ —

Range [250 335]

Clouds are cold

Values over land
Larger than over water
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Observed BT
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Radiance (W/m'.sterym)

(Atmospheric Infrared Sounder)

AIRS

& MODIS - IR only
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High in the atmosphere very little
radiation is emitted, but most will
reach the top of the atmosphere.

At some level there is an optimal balance between the
amount of radiation emitted and the amount reaching
the top of the atmosphere.

A lot of radiation is emitted from the dense lower
atmosphere, but very little survives to the top of the
atmosphere due to absorption.
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Weighting Functions

10

3° Longwave CO2

70 14.7 1 680 CO2, strat temp
100 * 14.4 2 696 CO2, strat temp
oo 14.1 3 711 CO2, upper trop temp
oo i 13.9 4 733 CO2, mid trop temp

13.4 5 748 CO2, lower trop temp
500 12.7 6 790 H2O, lower trop moisture
700 12.0 7 832 H20, dirty window
100 Midwave H20 & O3
11.0 8 907 window

o 9.7 9 1030 O3, strat ozone
. 7.4 10 1345 H20, lower mid trop moisture
500 7.0 11 1425 H20, mid trop moisture
oo 6.5 12 1535 H2O, upper trop moisture
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Radiance measured by IR Sensor

RTE (no scattering) in LTE

RV =T, &, " BV (Ts) < Upwelling IR radiation from surface

0
+ jp B, (T(p))dz, (p) « Upwelling IR radiation from atm. layers

0
-7.,-r,-| B, (T(p))d z-: (p) < Reflected downwelling IR radiation
Ps

+ Rvsun -COS(6’) ¥ o ( ps) . rj“” <« Reflected solar radiation

Sv

R...radiance, v...wavenumber, s...surface, p...pressure, sun...solar,
T...temperature, B...Planck function, ¢ ...emissivity,

7...level to space transmittance, 6...local solar zenith angle
r...reflectivity, with r = (1- ¢)/=,

7*...level to surface (downwelling) transmittance [7*= z.2(p.)/ 7,(p)] &



Solar Effects (Day Vs. Night) on
Infrared Measurements
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Radiative Transfer Equation

Summary

Radiative Transfer Equation in Infrared:

models the propagation of terrestrial emitted energy
through the atmosphere by

e absorption,

 scattering,

* emission and

* reflection

of gases, clouds, suspended particles, and surface.

The modeled radiances can be converted to brightness
temperature and inverted to obtain atmospheric
variables such as profile of temperature and water
vapor profiles and clouds (height, fraction, optical
thickness, size), aerosol/dust, surface temperature,

and surface types etc.....
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Summary

Radiance is the Energy Flux (emitted and/or reflected
by the Earth) which strikes the Detector Area at a
given Spectral Wavelength (wavenumber) over a
Solid Angle on the Earth;

Reflectance is the fraction of solar energy reflected to
space by the target;

Given an observed radiance, the Brightness
Temperature is the temperature, in Kelvin, of a
blackbody that emits the observed radiance;

Knowing the spectral reflective (Vis) and emissive
(IR) properties (spectral signatures) of different
targets it is possible to detect: clouds, cloud
properties, vegetation, fires, ice and snow, ocean
color, land and ocean surface temperature ...... 0
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