Practical Session: Remote Sensing and Wildfire Monitoring

The practical will consist of 3 sections:

- 1. MODIS imagery of Cape Town fires
- 2. Comparison between MODIS fire products and a Spot 2 scene
- 3. Fire detection with AFIS II

Cape fires, December 2008 (Lab 1)

The fire that began in Grabow on Saturday spread to the **Gordon's Bay** area by Monday and residents were evacuated. Many stood watching the 150 - 200 firefighters battling the blaze from below but several homes were damaged and at least 3 razed to the ground.

Task1:

Open ENVI 4.6 and load channel 1 and channel 2 (250m) MODIS corrected surface reflectance images as GeoTiff

Go to C:\IGARSS09\Fire\lab1

Task2:

Open MODIS channel 1 and channel 2 in a band 1:2:1 false colour composite and load RGB

Task 3:

Click in the scroll map on Cape Town and then use the Enhance option to do a 2% histogram stretch. A large fire will be visible east of Cape Town with a smoke plume drifting west

Task 4:

Continue by loading all 7 MODIS 500m images and evaluate the individual bands in relation to: (Rating bands from 0 - 5, 0 = poor, 5 = excellent)

- 1. Their ability to characterise the Gordons bay fire scar
- 2. Their ability to identify open flames (active fire pixels)
- 3. Their ability to detect the smoke plume

Task 5:

Evaluate different combinations of bands in R G B and provide a combination that best describes:

- 1. The fire scar
- 2. Active Fire
- 3. The smoke plume

MODIS bands

Primary Use	Band	Bandwidth	
Land/Cloud Boundaries	1	620-670	
	2	841-876	
Land/Cloud Properties	3	459-479	
	4	545-565	
	5	1230-1250	
	6	1628-1652	
	7	2105-2155	
	-		

Landsat Bands

Bands	Wavelength	Application	
TM 1	0.45-0.52 (blue)	designed for water body penetration,	
		making it useful for bathymetry/coastal mapping,	
		also useful for soil/vegetation discrimination;	
		cultural/urban feature identification	
TM 2	0.52-0.60 green)	designed to measure green reflectance peak of	
		vegetation for green vegetation mapping and	
		vigor assessment; also useful for cultural/urban	
		feature identification	
TM 3	0.63-0.69 (red)	designed to sense in a chlorophyll absorption region	
		aiding in plant species differentiation. Also useful	
		for cultural/urban feature identification	
TM 4	0.76-0.90 (near IR)	identification of plant/vegetation types,	
		health, and biomass content;	
		water body delineation; soil moisture discrimination	
TM 5	1.55-1.75 (mid IR)	indicative of moisture in soil and vegetation;	
		differentiate snow from clouds	
TM 6	10.4-12.5 (thermal IR)	vegetation stress and soil moisture discrimination	
		related to thermal radiation;	
		thermal mapping (urban, water)	
TM 7	2.08-2.35 (mid IR)	discrimination of mineral and rock types;	
		sensitive to vegetation moisture content.	

MODIS bands	Active fire	Burned Area	Smoke
Band 1			
620-670			
Band 2			
841-876			
Band 3			
459-479			
Band 4			
545-565			
Band 5			
1230-1250			
Band 6			
1628-1652			
Band 7			
2105-2155			

MODIS product evaluation (Lab 2)

Sabie forest fires 2007

The MODIS product evaluation aims to provide an overview of the current MODIS fire products.

Available data sets

C:/IGARSS09/Fire/lab2

- 1. MODIS Corrected surface reflectance (MOD/MYD 09) 27, 28 and 29 July 2007
- 2. MODIS Active fires (MOD 14) July 2007
- 3. MODIS Roy Burned area (MCD43) July 2007
- 4. MODIS Louis Burned area July 2007
- 5. Spot 2 high resolution image 11 Aug 2007

Step 1: Open days 27 - 29 July 2007 of MODIS MOD/MYD 09 data and find the forest fire in Sabie

Step 2: Open Spot 2 high resolution image in ENVI

Step 3: Use the ROI tool to map the burned area and create a shapefile

Step 4: Open ArcMap and add the Roy burned area map

Step 5: Open the active fire product

Step 6: Look at the differences between the two products for different fires

Question1: Why in some cases do the burn area product and active fire product agree on area affected and some not at all?

Step 7: Switch off the Roy burned area and load the Louis burned area product.

Question 2: Do one see the same picture?

Step 8: Switch off the active fire product and toggle between the Roy and Louis burned area products

Question 3: Why do you see differences?

Step 9: Open the Spot burned area layer on top of the Roy and Louis products and review the difference

AFIS viewer (Lab 3)

Lab 3 will involve the live tracking of the MODIS Aqua overpass at 14:13 pm.

Step 1:

Open WAMIS portal

www.wamis.co.za

Step 2:

Open AFIS

