DB Applications Workshop AOML: Practical Aspects of Real-Time Suomi NPP Imagery and Products

Liam Gumley Space Science and Engineering Center University of Wisconsin-Madison

VIIRS True Color, 2015/01/30

About Suomi NPP

Launched into a polar sun-synchronous orbit on Oct 28, 2011.

Developed by NASA and industry; operated by NOAA.

Spacecraft and sensors were developed by industry.

Science algorithms were also developed by industry.

Question: Can the science products (e.g., global cloudiness) continue the *Climate Data Record* established by previous NASA and NOAA satellites?

Climate Data Record = "A <u>time series</u> of measurements of sufficient length, consistency, and continuity to determine climate var<u>iability</u>. and change."

Suomi NPP at Ball Aerospace July 2010

orkshop

Vila

Suomi NPP Sensor Suite

- VIIRS Medium Resolution Visible & Infra-red Imager
- CrIS Fourier Transform Spectrometer for IR Temperature and Moisture sounding
- ATMS Microwave sounding radiometer
- OMPS Total Ozone Mapping and Ozone Profile measurements
- CERES Earth Radiation Budget

Suomi NPP Launch 2011/10/28

ATMS First Light image

Suomi NPP ATMS channel 18 antenna temperature, 8 November 2011

VIIRS First Light Image

Suomi NPP VIIRS M-band True Color, 21 November 2011

CrIS First Light Image

900 cm⁻¹ Brightness Temperature (K)

Suomi NPP CrIS thermal infrared, 21/23/25 January 2012

What is new about VIIRS?

- VIIRS native resolution is 375 and 750 meters (vs. 250 and 1000 meters for MODIS).
- VIIRS has 22 spectral bands while MODIS has 36 spectral bands.
- VIIRS has a thermal infrared band at 375 meter resolution.
- VIIRS has a Day/Night visible band.
- VIIRS has near constant FOV size across the scan.
- Redundant "bow-tie" pixels on VIIRS are not transmitted to the ground ("bowtie deletion").

Where To Obtain VIIRS Data

Suomi NPP Data Archive: NOAA CLASS

http://www.class.noaa.gov/

Notes about NOAA CLASS

- CLASS is the official archive for NPP and JPSS data.
- Ad-hoc orders are supported.
- Subscription orders are supported.
- A detailed tutorial on ordering Suomi NPP data is available.
- NASA Atmosphere PEATE at UW/SSEC also provides VIIRS SDRs.

VIIRS Scanner Characteristics

VIIRS Spectral Bands

		Band Wave	Wave- length	Horiz Sam (km Downtrac	ple Interval (x Crosstrack)	Driving EDRs	Radi- ance	Ltyp or Ttyp	Signal to Noise Ratio (dimensionless) or NE ^Δ T (Kelvins)		
			(^µ m)	Nadir	End of Scan		Range	21	Required	Predicted	Margin
		M1	0.412	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	44.9	352	441	25%
						Aerosols	High	155	316	807	155%
		M2	0.445	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	40	380	524	38%
	iodes					Aerosols	High	146	409	926	126%
		M3	0.488	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	32	416	542	30%
A						Aerosols	High	123	414	730	76%
S/NIR FF	9	M4	0.555	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	21	362	455	26%
	€					Aerosols	High	90	315	638	102%
	E	1	0.640	0.371 x 0.387	0.80 x 0.789	Imagery	Single	22	119	146	23%
	i≣	M5	0.672	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	10	242	298	23%
	ι <u>ω</u>					Aerosols	High	68	360	522	45%
		M6	0.746	0.742 x 0.776	1.60 x 1.58	Atmospheric Corr'n	Single	9.6	199	239	20%
		12	0.865	0.371 x 0.387	0.80 x 0.789	NDVI	Single	25	150	225	50%
		M7	0.865	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	6.4	215	388	81%
						Aerosols	High	33.4	340	494	45%
CCD		DNB	0.7	0.742 x 0.742	0.742 x 0.742	Imagery	Var.	6.70E-05	6	5.7	-5%
		M8	1.24	0.742 x 0.776	1.60 x 1.58	Cloud Particle Size	Single	5.4	74	98	32%
	dTe (HCT)	M9	1.378	0.742 x 0.776	1.60 x 1.58	Cirrus/Cloud Cover	Single	6	83	155	88%
		13	1.61	0.371 x 0.387	0.80 x 0.789	Binary Snow Map	Single	7.3	6.0	97	1523%
S/MWIR		M10	1.61	0.742 x 0.776	1.60 x 1.58	Snow Fraction	Single	7.3	342	439	28%
		M11	2.25	0.742 x 0.776	1.60 x 1.58	Clouds	Single	0.12	10	17	66%
	ပ္တု	14	3.74	0.371 x 0.387	0.80 x 0.789	Imagery Clouds	Single	270 K	2.500	0.486	415%
	돈	M12	3.70	0.742 x 0.776	1.60 x 1.58	SST	Single	270 K	0.396	0.218	82%
	l₫	M13	4.05	0.742 x 0.259	1.60 x 1.58	SST	Low	300 K	0.107	0.063	69%
						Fires	High	380 K	0.423	0.334	27%
		M14	8.55	0.742 x 0.776	1.60 x 1.58	Cloud Top Properties	Single	270 K	0.091	0.075	22%
R	Ϋ́	M15	10.763	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K	0.070	0.038	85%
ΓM		15	11.450	0.371 x 0.387	0.80 x 0.789	Cloud Imagery	Single	210 K	1.500	0.789	90%
	۵/I	9116	12.013	0.742 x 0.776	1.60 x 1.58 ^{0pp}	incations workshop Wian	Single	300 K	0.072	0.051	42%

VIIRS Scan Details

- 16 detectors along track (M-bands)
- 32 detectors along track (I-bands)
- Swath width 3000 km
- Granule size 85.7 sec
- Usually 48 scans per granule (sometimes 47)
- Calibrated TOA reflectance is calculated using the terrain corrected solar zenith angle.

VIIRS Scan Overlap

VIIRS Bowtie Deletion Zones

Visualization of a VIIRS M-band SDR granule (Python)

Dimensions are 3200x768 pixels Note bowtie deletion zones Fill value in these zones is 65533

Another example of bowtie deletion

McIDAS-X, served by VIIRS SDR ADDE

VIIRS aggregation zones (to maintain near constant FOV size)

VIIRS Calibration

- For thermal emissive (infrared) bands, a full aperture black body (BB) with accurately-known emissivity and temperature, and deep space, are viewed on every scan.
- For reflected solar (visible, near-infrared) bands, a full aperture solar diffuser (SD) providing precisely-attenuated sunlight in the visible region of the spectrum is viewed on every scan.
- Since the diffusing surface of the SD may degrade slightly over time on orbit, the sensor also includes a Solar Diffuser Stability Monitor (SDSM) to detect changes in the SD reflected radiance.
- SD and SDSM data are valid during a one minute window each orbit that occurs near the Earth's south pole when the sun illuminates the respective input ports.

Anatomy of a VIIRS File Name

GITCO_npp_d20120207_t0456502_e0458143_b01444_c20120207112240904333_noaa_ops.h5

GITCO	= product name (5 characters; GITCO = VIIRS I-band geolocation)
npp	= platform name (3 characters)
d20120207	= date of observation (yyyymmdd)
t0456502	= start time of granule (hhmmsss)
e0458143	= end time of granule (hhmmsss)
b01444	= orbit number
c20120207112240904333	= file creation date and time
noaa	= originator of the file (4 characters; noaa = NOAA/NESDIS/IDPS)
ops	= domain description (3 characters; ops = operational)

The file naming convention is described in detail in JPSS CDFCB External Volume 1: Overview, available at

http://npp.gsfc.nasa.gov/science/documents.html

VIIRS Detailed Information

For detailed information on VIIRS sensor data formats, scanning geometry, bowtie deletion, detector aggregation, etc., see

"NPOESS Common Data Format Control Book -External Volume VII – Part I – NPOESS Downlink Data Formats D34862-07-01 Rev C" from

http://npp.gsfc.nasa.gov/documents.html

VIIRS M-band SDR Contents

Name	Description	Data Type	Bands	Aggregate Dimensions (N = Number of Granules)	Granule Dimensions	Units
	Calibrated Top of Atmosphere (TOA) Radiance for each VIIRS pixel	32-bit floating point	M3-M5, M7, M13	[N*768, 3200]	[768,3200]	W/(m² sr μm)
Radiance		unsign ed 16- bit integer	M1, M2, M6, M8- M12, M14- M16			
Reflectance	Calibrated TOA Reflectance for each VIIRS pixel	unsign ed 16- bit integer	M1 – M11	[N*768, 3200]	[768,3200]	unitless
BrightnessTempe rature	Calibrated TOA Brightness Temperature for each	32-bit floating point	M13	INI*769		kelvin
	VIIKS pixel	unsign ed 16- bit integer	M12, M14 – M16	3200]	[768,3200]	

VIIRS M-band Geolocation Contents

Name	Description	Data Type	Aggregate Dimensions	Granule Dimensions	Units	
StartTime	Starting Time of each scan in IET (1/1/1958)	64-bit integer	[N*48]	[48]	microsecond	
MidTime	Mid-Time of each scan in IET (1/1/1958)	64-bit integer	[N*48]	[48]	microsecond	
Latitude	Latitude of each pixel (positive North)	32-bit floating point [N*768, 3200]		[768, 3200]	degree	
Longitude	Longitude of each pixel (positive East)	32-bit floating point	[N*768, 3200]	[768, 3200]	degree	
SolarZenithAngle	Zenith angle of sun at each pixel position	32-bit floating point	[N*768, 3200]	[768, 3200]	degree	
SolarAzimuthAngle	Azimuth angle of sun (measured clockwise positive from North) at each pixel position	32-bit floating point	[N*768, 3200]	[768, 3200]	degree	
SatelliteZenithAngle	Zenith angle to Satellite at each pixel position	32-bit floating point	[N*768, 3200]	[768, 3200]	degree	
SatelliteAzimuthAngle	Azimuth angle (measured clockwise positive from North) to Satellite at each pixel position	32-bit floating point	[N*768, 3200]	[768, 3200]	degree	

VIIRS Product Types

VIIRS Products

MISSION AREAS								
	Atmosphere		Climate					
	Land		Ocean					
	Space Env.		RDR/SDR Only					

Albedo (Surface)

- **Cloud Cover/Layers**
- **Cloud Effective Part Size**

- **Cloud Top Height**
- **Cloud Top Pressure**

- Land Surface Temp 1
- Surface Type

- Ocean Color/Chlorophyll 2
- Suspended Matter
- Vegetation Index
- Aerosol Optical Thickness
- Aerosol Particle Size
- Ice Surface Temperature 3
- Imagery 3
- Sea Ice Characterization 3
- Snow Cover/Depth 3
- Sea Surface Temperature 3

VIIRS Product Types

Raw Data Record (RDR) = MODIS Level 0 Sensor Data Record (SDR) = MODIS Level 1B Intermediate Product (IP) = MODIS Level 2 Environmental Data Record (EDR) = MODIS Level 2 Climate Data Record (CDR) = MODIS Level 3

Product format is *HDF5*; described in CDFCB volumes available at

http://npp.gsfc.nasa.gov/science/documents.html

How many VIIRS SDR files per day?

- 16 M-bands, 5 I-bands, and 1 day/night band (16+5+1 = 22)
- Geoid and terrain corrected geolocation for M, I, and DNB (2x3 = 6)
- 85.7 sec per granule
- (86400 sec/day) / (85.7 sec/granule) = 1008 granules per day
- VIIRS SDR: (1008 granules/day) x (28 files/granule) = 28224 files/day
- MODIS L1B: 288 granules/day x 4 files/granule = 1152 files/day

Raw Data Record (RDR)

- The RDR is an accumulation of binary data generated by sensors on board the NPP spacecraft and assembled into groups called application packets (APs).
- The ground software collects one or more groups of related APs together into granules which are then assembled into common RDR structures and combined with metadata to create the delivered HDF5 file.
- Similar to MODIS Level 0
- CDFCB-X documents at right can be obtained from...

Sensor Data Record (SDR)

- The SDR is an accumulation of binary data generated by sensors on board the NPP spacecraft and assembled into groups called application packets (APs).
- Processing an RDR into an SDR involves unpacking and decommutating the Application Packet (AP) data, as necessary, applying calibration (radiometric, geometric, engineering), and finally geo-locating, as needed, using ephemeris and attitude information and earth model information.
- An SDR contains the following:
 - Calibrated sensor data
 - Geolocation data (where applicable)
 - Quality flags
 - Metadata at the granule and aggregation level
- Product names GMODO, GMTCO, GIMGO, GITCO, SVM[01-16], SVI[01-05]

Intermediate Product (IP)

- IPs are defined as a data subset or retrieval by-product that is required within another primary data product's generation sequence or is used as an input to secondary processing or analysis.
- Generally are pixel-level products like the SDRs (750m resolution).
- Certain IPs (Cloud Mask, Quarterly Surface Type) are packaged and delivered to the end-user, and are used to create further IPs (Cloud Optical Properties, Cloud Top Parameters, Aerosol etc...).
- Other IPs (Quarterly Surface Type/Land Water Mask [QSTLWM IP] are generated during the creation of IPs and EDRs but are not delivered.
- Atmosphere Product Names:
 - IICMO (Cloud Mask)
 - IVAOT (Aerosol Optical Thickness)
 - IVCOP (Cloud Optical Properties [COT, EPS])
 - IVCTP (Cloud Top Parameters [CTP, CTT, CTH])

Environmental Data Records (EDR)

- Environmental Data Records (EDRs) are data records containing environmental parameters or imagery generated by the IDPS system as products deliverable to the user.
- An EDR contains the following:
 - EDR specific data
 - Appropriate geolocation values
 - Quality Flags

- Metadata represented as Attributes in the HDF5 file that are provided at the granule and aggregation level

• Atmosphere Product names VAOOO (AOT), VCEPO (EPS), VCOTO (COT), VCTPO (CTP), VCTTO(CTT), VCTHO (CTH)...

Software to Read VIIRS Data

Hydra2

- Hydra2 is an interactive application for viewing and interrogating imager and sounder data.
- Supported satellites include Suomi NPP, Terra, Aqua, NOAA, Metop, FY-3.
- Supported sensors include:
 - Imagers VIIRS, MODIS, AVHRR, MERSI
 - IR Sounders CrIS, IASI, AIRS
 - MW Sounders ATMS, AMSU
- Software is free; runs on PC/Mac/Linux

Hydra2

HDF5 Software

- <u>http://www.hdfgroup.org/HDF5/</u>
- Software library (API) for C, Fortran, Java
- Command line utilities (e.g., h5dump) for Windows, Mac, Linux
- HDFView interactive viewer
- IDL, Matlab, and Python all have well developed HDF5 APIs
- ENVI and other commercial software does not support VIIRS (yet)

000		HDF	View						
<u>File Window Tools H</u> elp									
Recent Files pp/australia/Jan20/viirs/SVM01_npp_d20120120_t0538424_e0540066_b01189_c20120120120120133049558 Clear Text									
5 SVM01 npp d20120120 t0538424 📥	🕅 Table	/iew – Refle	ctance = /A	II Data /VIIRS	-M1-SDR All	/ _ /lisers//	numley/ 🗗	ি সি	
	<u>l</u> able	HAT .							
- 🏙 ModeGran									
- 🕮 ModeScan		0	1	2	3	4	5		
	0	65533	65533	65533	65533	65533	65533		
— # NumberOfBadChecksums	1	65533	65533	65533	65533	65533	65533		
- 🕅 NumberOfDiscardedPkts	2	17867	17790	17728	17636	17589	17468	_	
	3	17325	17365	17362	17287	17184	17096	_	
- 🖽 NumberOfMissingPkts	4	17607	17632	17672	17540	17365	17205		
- 🗱 NumberOfScans	5	18661	18312	18035	17744	17540	17565	_	
	6	18403	18557	18039	17535	17532	1/558		
- ett PadByte 1		18262	18130	1/69/	17408	1/834	18117	_	
- CF1 VIIRSMBANDSDR	8	18480	19388	19934	19887	19623	19388		
	9	18800	20708	21939	21921	20886	19924		
- 🖽 QF2_SCAN_SDR	10	19739	19921	20505	20515	20111	19735		
- 🛱 QF3 SCAN RDR	11	10330	18049	10406	19841	20152	19854	_	
	12	19330	19154	19490	20401	20042	20451	_	
- H QF4_SCAN_SDR	10	19002	19/33	19902	65522	20300	65522		
- 🛱 QF5 GRAN BADDETECTOR	14	65522	65522	65533	65533	65533	65533	_	
	15	65533	65533	65533	65533	65533	65533		
– 🖽 Kadiance	17	65533	65533	65533	65533	65533	65533	_	
- 🗱 RadianceFactors	18	19780	21423	21743	21107	19883	19365	_	
	19	19313	19722	19946	19715	19469	19124	_	
- 🖽 Reflectance	20	18451	18376	19403	20029	19725	19478	_	
ReflectanceFactors	21	19030	19056	19729	20287	20211	20208	_	
	22	19344	19541	19795	19949	20045	20142	_	
Data_Products		15511	10011	15755	15545	20015	LUITE		
Reflectance (7414064, 2)									
16-bit unsigned integer, 768 x 3200									
Number of attributes – 0									

Reflectance (7414064, 2) 16-bit unsigned integer, 768 x 3200 Number of attributes = 0

Log Info Metadata

Interrogation of VIIRS files using h5dump

- VIIIRS RDR, SDR, EDR, CDR and IP files are in HDF5 format
- HDF5 format is hierarchical in nature, and HDF5 data structure shares a similarity with a UNIX file system. We can dump the basic file structure using "h5dump -n"...

h5dump -n SVM16 npp d20120120 t0534262 e0535504 b01189 c20120120120117709679 noaa ops.h5 HDF5 "SVM16 npp d20120120 t0534262_e0535504_b01189_c20120120120117709679_noaa_ops.h5" { FILE CONTENTS { group 1 group /All Data /All Data/VIIRS-M16-SDR All group /All Data/VIIRS-M16-SDR All/BrightnessTemperature dataset /All_Data/VIIRS-M16-SDR_All/BrightnessTemperatureFactors dataset dataset /All Data/VIIRS-M16-SDR All/ModeGran /All Data/VIIRS-M16-SDR All/ModeScan dataset dataset /All Data/VIIRS-M16-SDR All/NumberOfBadChecksums /All Data/VIIRS-M16-SDR All/NumberOfDiscardedPkts dataset /All_Data/VIIRS-M16-SDR_All/NumberOfMissingPkts dataset dataset /All Data/VIIRS-M16-SDR All/NumberOfScans dataset /All Data/VIIRS-M16-SDR All/PadByte1 /All Data/VIIRS-M16-SDR All/QF1 VIIRSMBANDSDR dataset dataset /All Data/VIIRS-M16-SDR All/QF2 SCAN SDR dataset /All Data/VIIRS-M16-SDR All/QF3 SCAN RDR dataset /All Data/VIIRS-M16-SDR All/QF4 SCAN SDR dataset /All Data/VIIRS-M16-SDR All/OF5 GRAN BADDETECTOR dataset /All Data/VIIRS-M16-SDR All/Radiance /All_Data/VIIRS-M16-SDR_All/RadianceFactors dataset /Data Products group /Data Products/VIIRS-M16-SDR group dataset /Data Products/VIIRS-M16-SDR/VIIRS-M16-SDR Aggr /Data Products/VIIRS-M16-SDR/VIIRS-M16-SDR Gran 0 dataset } }

```
4/28/16
```

٠

Interrogation of VIIRS SDR files using h5dump

To examine the details about a particular dataset, say the M16 radiance...

```
h5dump -H-d /All_Data/VIIRS-M16-SDR_All/Radiance
SVM16_npp_d20120120_t0534262_e0535504_b01189_c20120120120117709679_noaa_ops.h5
HDF5 "SVM16_npp_d20120120_t0534262_e0535504_b01189_c20120120120117709679_noaa_ops.h5" {
DATASET "/All_Data/VIIRS-M16-SDR_All/Radiance" {
DATATYPE H5T_STD_U16BE
DATASPACE SIMPLE { (768, 3200 ) / (768, 3200 ) }
}
```

Examining the data values in the radiance dataset...

```
h5dump -d /All_Data/VIIRS-M16-SDR_All/Radiance
SVM16_npp_d20120120_t0534262_e0535504_b01189_c20120120120117709679_noaa_ops.h5" {
DATASET "/All_Data/VIIRS-M16-SDR_All/Radiance" {
DATASYPACE SIMPLE { (768, 3200 ) / (768, 3200 ) }
DATA {
(0,0): 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, (0,27): 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, (0,27): 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, (0,36): 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65533, 65
```

IDL code to read VIIRS SDR M15

;- Open the file

file = 'SVM15_npp_d20120120_t0528446_e0530088_b01189_c20120115158805940_noaa_ops.h5' file_id = h5f_open(file)

```
;- Read the data array
data_id = h5d_open(file_id, '/All_Data/VIIRS-M15-SDR_All/BrightnessTemperature')
data = h5d_read(data_id)
h5d_close, data_id
```

```
;- Read the scale factors
data_id = h5d_open(file_id, '/All_Data/VIIRS-M15-SDR_All/BrightnessTemperatureFactors')
factors = h5d_read(data_id)
h5d_close, data_id
```

```
;- Apply the scale factors
data = data * factors[0] + factors[1]
```

;- Close the file h5f_close, file_id

Software supporting HDF5

- IDL
- Matlab
- Python
- C/Fortran APIs
- Java
- ENVI (see VIIRS Conversion Toolkit)

VIIRS Projected Image Examples

Suomi NPP Direct Broadcast and the Community Satellite Processing Package (CSPP)

Suomi NPP Direct Broadcast

- SNPP transmits VIIRS, CrIS, and ATMS data realtime via X-band direct broadcast.
- 7812 MHz, 13 Mbps.
- No encryption, licenses, or fees.
- Downlink format is described in CDFCB External Volume VII at

http://npp.gsfc.nasa.gov/documents.html

• Software for real-time processing of SNPP DB data is available from SSEC and NASA.

Orbital Systems 2.4-meter X/L-band Antenna Installation at AOML Sep 2014

Suomi NPP Sensor Suite

Primary sensors on HRD direct broadcast

- VIIRS Medium Resolution Visible & Infra-red Imager
- CrIS Fourier Transform Spectrometer for IR Temperature and Moisture sounding
- ATMS Microwave sounding radiometer

OMPS – Total Ozone Mapping and Ozone Profile measurements

CERES - Earth Radiation Budget

Real-Time Applications

- Numerical Weather Prediction: Infrared and Microwave Sounder Data
- Wildfire Detection for Disaster Management: Thermal Infrared Imager Data (e.g, GA Sentinel)
- Sea Ice Detection for Ship Navigation: Day/Night Band Imager Data
- Volcanic Ash Detection: Thermal Infrared Imager

Timeliness of the Data is Key

NWP Forecast Error Reduction

Infrared and Microwave Sounder data from polar orbiting satellites have the largest impact on improving NWP forecast skill

Wildfire Detection

Sea Ice Mapping for Navigation

VIIRS Day/Night Band as seen by NWS Anchorage Ice Desk

Volcanic Ash Alert System

Receiving Real-Time Data

Hardware Required:

- Tracking antenna with 2.4-3.0 meter reflector
- LNA, Downconverter, Demodulator

X-band: *Terra, Aqua, SNPP, FY-3* L-band: *POES, Metop, FY-3*

Raw bitstream is captured from demodulator and framed to Level 0.

2.4-m X/L-band Antenna NWS Honolulu

Worldwide X-band Sites

Direct Broadcast Software from SSEC

International ATOVS Processing Package (IAPP) heritage goes back to 1985. IAPP supports NOAA 15-19.

International MODIS/AIRS Processing Package (IMAPP) has been available since 2000 (funded by NASA). IMAPP supports Terra and Aqua.

Community Satellite Processing Package (CSPP) first released in 2012 (funded by JPSS).

IMAPP MODIS TPW

What is CSPP?

CSPP (Community Satellite Processing Package) is a collection of software systems for processing data from meteorological satellites.

The primary goal of CSPP is to support users who

- Receive satellite data via direct broadcast;
- Process it independently;
- Create higher level products and images in real time.

Funding is supplied by JPSS and NOAA.

CSPP Software Philosophy

CSPP software must:

- Create useful products for the DB community,
- Include up-to-date algorithms,
- Be pre-compiled for 64-bit Linux,
- Be easy to install and operate,
- Include test data for verification,
- Have prompt user support,
- Run efficiently on modest hardware.

CSPP LEO Satellites and Sensors

CSPP LEO includes support for Suomi NPP and JPSS, POES, Metop, Terra, and Aqua.

- For Suomi NPP, supported sensors include VIIRS, CrIS, ATMS.
- For POES and Metop, supported sensors include AVHRR, IASI, AMSU-A/B, MHS (Level 2 products only; Level 1 processing provided by AAPP).
- For Aqua and Terra, supported sensors include *MODIS, AIRS, and AMSU*.

CSPP Satellite/Sensor/Product Matrix

	Imager	Infrared Sounder	Microwave Sounder
SNPP	VIIRS Level 1B, Images, Visualization, Atmosphere, Land, Ocean	CrIS Atmospheric Profiles, Clouds, Visualization	ATMS Atmospheric Profiles, Precipitation, Visualization
Terra	MODIS Images, Visualization	N/A	N/A
Aqua	MODIS Images, Visualization	AIRS Atmospheric Profiles, Clouds, Visualization	AMSU Atmospheric Profiles, Precipitation, Visualization
Metop-A/B	AVHRR Atmosphere, Cloud, Land, Visualization	IASI, HIRS Atmospheric Profiles, Clouds, Visualization	AMSU, MHS Atmospheric Profiles, Precipitation
NOAA-18/19	AVHRR Atmosphere, Cloud, Land, Visualization	HIRS Atmospheric Profiles	AMSU, MHS Atmospheric Profiles, Precipitation

Other DB Software Packages

Software	Products	Developer
International MODIS/AIRS Processing Package (IMAPP)	MODIS Atmosphere and Cloud Products; Virtual Appliance; Google Earth Imagery; Forecast Model; Air Quality Model; Imagery	UW/SSEC and MODIS Science Team
Advanced ATOVS Processing Package (AAPP)	POES and Metop Level 1B, BUFR, and HDF5	UK Met Office, Meteo France
SeaDAS	MODIS, VIIRS, CZCZ Ocean Color and Sea Surface Temperature	NASA Ocean Biology Processing Group
Direct Readout Land Applications	MODIS and VIIRS Wild Fires and Vegetation Indices	NASA Direct Readout Laboratory

CSPP Users

- EUMETSAT for EARS-NPP EUMETCast distribution
- UK Met Office
- Météo-France
- CSIR South Africa
- Swedish Met Service
- DWD German Met Service
- Australia Bureau of Meteorology
- Taiwan Central Weather Bureau
- Belarus National Academy of Science
- Indonesia Government Space Agency (LAPAN)
- German Aerospace Center
- CONABIO Mexico
- EURAC Remote Sensing Institute Italy

- China National Satellite Meteorological Center
- Brazil INPE
- Danish Meteorological Institute
- Japanese Meteorological Agency
- Norwegian Meteorological Institute
- Swedish Met Institute
- Kazakhstan Space Investigation Institute
- UK Plymouth Marine Lab
- Naval Research Lab
- Vendors SeaSpace, ScanEx, SpaceTec and others.
- In addition, CSPP DB products are being used in the US NWS in HI, Alaska and CONUS

CSPP LEO Software (Jan 2015)

1. VIIRS, CrIS, and ATMS Level 1B / SDRs geolocation and calibration (*CSPP SDR*)

2. VIIRS Level 2 / EDRs cloud mask, active fires, surface reflectance, NDVI, EVI, SST, LST, AOT (*CSPP EDR*)

- 3. CrIS, IASI, and AIRS Temperature/Moisture Profiles (*HSRTV*)
- 4. VIIRS and MODIS Reprojected Imagery (POLAR2GRID)
- 5. ATMS, AMSU, and MHS Profile and Surface Retrievals (MIRS)
- 6. VIIRS, MODIS, and AVHRR Cloud Products (*CLAVR-x*)
- 7. VIIRS, MODIS, and MERSI Interactive Data Analysis (HYDRA2)

CSPP Product: VIIRS SST

Google ea

CSPP Product: VIIRS True Color

CSPP Product: VIIRS Active Fires

CSPP VIIRS SDR and EDRs

0.16

0.24

0.32

AOT EDR

confident deal8/ Mobably clear probably cloudy confide =0.6 =0.4DB Applications Workshopolyliami VIIRS Cloud Mask VIIRS NDVI

AOT

VIIRS AOT

0.40

0.48

0.56

0.64

6,62

0.80

CSPP VIIRS Projected Imagery (DNB)

AREA FORECAST DISCUSSION NATIONAL WEATHER SERVICE SAN FRANCISCO BAY AREA 443 AM PDT FRI MAR 14 2014

.DISCUSSION...AS OF 4:10 AM PDT FRIDAY...THE DRY TAIL END OF A WEATHER SYSTEM MOVING IN TO THE PACIFIC NORTHWEST IS APPROACHING OUR DISTRICT ... AND RESULTING IN ENHANCEMENT OF THE MARINE LAYER AND A RETURN OF THE MARINE STRATUS. LATEST GOES FOG **PRODUCT IMAGERY...AND IN RATHER** SPECTACULAR DETAIL JUST REC'D SUOMI VIIRS NIGHTTIME HIGH RES VISUAL IMAGE...SHOW COVERAGE ALONG MUCH OF THE COAST FROM PT REYES SOUTH TO THE VICINITY OF THE MONTEREY PENINSULA...AND A **BROAD SWATH EXTENDING INLAND** ACROSS SAN FRANCISCO AND THROUGH THE GOLDEN GATE TO THE EAST BAY, LATEST BODEGA BAY AND FT ORD PROFILER DATA INDICATE A MARINE LAYER DEPTH OF ABOUT 1300 FT. SOME THIN HIGH CLOUDS ARE ALSO PASSING THROUGH ABOVE.

MIRS Products

Surface Temperature with Rain Mass Profile

Total Precipitable Water with contours of Cloud Liquid Water

Suomi NPP ATMS 2014-01-23 18:19Z

CLAVR-X Products

CSPP LEO Upcoming Releases

1. CrIS and ATMS Temperature and Moisture Profile Physical Retrieval (*NUCAPS by C. Barnet et al.*). Future release will support IASI/AMSU and AIRS/AMSU.

2. VIIRS Sea Surface Temperature (*ACSPO by A. Ignatov et al.*). Future release will support MODIS and AVHRR.

3. CrIS Full Spectral Resolution calibration based on NOAA calibration team version of ADL (*Yong Han et. al*).

Items 1-3 above are in final testing and should be released by the end of 1st quarter 2015.

VIIRS SST from ACSPO 2015-01-01 SSEC Direct Broadcast

AOML X/L-Band Reception and Processing System

Reception System

- Satellite data scheduling and reception is handled by the EOS Front End Server (EOS-FES).
- The EOS-FES sends commands to the antenna positioner; schedules satellite passes; controls the demodulators; and saves decoded/framed satellite data (Level 0) to disk.
- Level 0 files are pushed via FTP to the Processing System.

Processing System

- Satellite data processing is handled by the Direct Broadcast Processing System (DBPS) server.
- The DBPS server ingests Level 0 satellite data delivered from the EOS-FES and creates Level 1 and Level 2 products.
- Products and images are saved to disk and are retained for 7 days.
- Products and images are served via this website: http://dbps.aoml.noaa.gov/

Product Directories

- For each satellite series (eos, fy3, noaa, metop, jpss, gcom), the following directories contain the products:
 - levelO: framed uncalibrated data (binary, HDF5)
 - level1: calibrated and geolocated sensor data (HDF4/5)
 - level2: geophysical products (HDF4/5, netCDF4)
 images: projected imagery (JPEG, GeoTIFF, PNG, GIF)