Introduction to the MODIS sensor and products

DB Applications Workshop University of Puerto Rico - Mayaguez April 2016

Liam Gumley Space Science and Engineering Center University of Wisconsin-Madison

Terra

Launched: Dec. 18, 1999 10:30 am descending node ASTER: Hi-res imager CERES: Broadband scanner MISR: Multi-view imager MODIS: Multispectral imager MOPITT: Limb sounder

Expected lifetime > 15 years

Terra MODIS first light image, 24 Feb. 2000

Birdfoot Delta Mississippi River USA

Aqua

Launched: May 4, 2002 1:30 pm ascending node AIRS: Infrared sounder AMSR-E: Microwave scanner AMSU: Microwave scanner CERES: Broadband scanner MODIS: Multispectral imager

Expected lifetime > 15 years

Moderate Resolution Imaging Spectroradiometer (MODIS)

Heritage: AVHRR (land), SeaWIFS (ocean), HIRS (atmosphere)

Spectral coverage: 36 bands from 0.4 to 14.2 microns

Spatial resolution: 2 bands @ 250 m; 5 @ 500 m; 29 @ 1000 m Major differences:

- Many spectral bands (490 detectors)
- Multiple samples along track on each earth scan
- Higher spatial resolution
- On-orbit radiometric, spatial, and spectral calibration
- Improved radiometric accuracy and precision (12-bit)
- Improved geolocation accuracy
- Higher data rate requiring X-band direct broadcast

MODIS Instrument Overview

- 36 spectral bands (490 detectors) covering 0.4 to 14.5 μm
- 4 Focal Plane Arrays: Visible, Near Infrared, Shortwave Infrared, Longwave Infrared
- On-Board Calibrators: SD/SDSM, SRCA, and BB (plus space view)
- 12 bit (0-4095) dynamic range

VIS

400 450 500 550

350

- 2-sided Paddle Wheel Scan Mirror scans 2330 km swath in 1.47 sec
- Day data rate = 10.6 Mbps; night data rate = 3.3 Mbps

600 600

NIR

700 800 900 1000 1100 1000 2000 3000

4000

50006000 8000 1000012000140001600

MODIS On-board Calibrators

SD

SDSM

- SD Solar Diffuser for RSB calibration, SD BRDF determined from pre-launch, referenced to a transfer standard calibrated at NIST
- SDSM Solar Diffuser Stability Monitor for tracking SD degradation
- BB Blackbody (12 thermistors reference to NIST standard) for TEB calibration. Emissivity determined from pre-launch calibration using a blackbody calibration source.
- SRCA Spectroradiometric Calibration Assembly for spectral and spatial characterization

MODIS Challenges

Multiple detectors:

- •Detector differences are noticeable
- •Dead or out-of-family detectors must be handled
- •Multiple samples along track introduce bowtie distortion

Spectral information:

•Many interdependent bands

•How to use the spectral information? (algorithm design challenge)

Data rate:

•Orders of magnitude larger than heritage sensors

MODIS Reflected Solar Bands

Primary Use	Band	Bandwidth ¹	Spectral	Required		
		Danati	Radiance ²	SNR ³		
Land/Cloud/Aerosols Boundaries	1	620 - 670	21.8	128	250 meters	
	2	841 - 876	24.7	201		
Land/Cloud/Aerosols Properties	3	459 - 479	35.3	243	500 meters	
	4	545 - 565	29.0	228		
	5	1230 - 1250	5.4	74		
	6	1628 - 1652	7.3	275		
	7	2105 - 2155	1.0	110		
Ocean Color/ Phytoplankton/ Biogeochemistry	8	405 - 420	44.9	880	1000 meters	
	9	438 - 448	41.9	838		
	10	483 - 493	32.1	802		
	11	526 - 536	27.9	754		
	12	546 - 556	21.0	750		
	13	662 - 672	9.5	910		
	14	673 - 683	8.7	1087		
	15	743 - 753	10.2	586		
	16	862 - 877	6.2	516		
Atmospheric Water Vapor	17	890 - 920	10.0	167		
	18	931 - 941	3.6	57		
	19	915 - 965	15.0	250		
Cirrus Clouds	26	1380				

MODIS Thermal Emissive Bands

Primary Atmospheric	Band	Bandwidth ¹	T _{typical}	Radiance ²	$NE^{\Delta}T(K)$	$NE^{\Delta}T(K)$
Application			(K)	at T _{typical}	Specification	Predicted
Surface Temperature	20	3.660-3.840	300	0.45	0.05	0.05
	22	3.929-3.989	300	0.67	0.07	0.05
	23	4.020-4.080	300	0.79	0.07	0.05
Temperature profile	24	4.433-4.498	250	0.17	0.25	0.15
	25	4.482-4.549	275	0.59	0.25	0.10
Moisture profile	27	6.535-6.895	240	1.16	0.25	0.05
	28	7.175-7.475	250	2.18	0.25	0.05
	29	8.400-8.700	300	9.58	0.05	0.05
Ozone	30	9.580-9.880	250	3.69	0.25	0.05
Surface Temperature	31	10.780-11.280	300	9.55	0.05	0.05
	32	11.770-12.270	300	8.94	0.05	0.05
Temperature profile	33	13.185-13.485	260	4.52	0.25	0.15
	34	13.485-13.785	250	3.76	0.25	0.20
	35	13.785-14.085	240	3.11	0.25	0.25
	36	14.085-14.385	220	2.08	0.35	0.35

Visible/Near-Infrared Transmittance Spectrum

Thermal Infrared Absorption Spectrum

MODIS Orbit and Scan Geometry

- Terra: 10:30 am local descending
- Aqua: 1:30 pm local ascending
- Orbit period: 99 minutes
- Repeat cycle: 16 days (same as Landsat; precisely controlled)
- Scan mirror: Double sided, 20.3 revolutions/minute
- Scan rate: 1.477 scans/sec
- Scan angle: +/- 55 degrees
- Swath width: 2330 km across track, 10 km along track

MODIS Bowtie

Consecutive "bowtie" shaped scans are contiguous at nadir, and overlap as scan angle increases...

MODIS bowtie artifacts at edge of swath

Band 2 (0.87 micron) 250 meter resolution

Bowtie Artifacts

- 1. Are not a 'problem': they are a consequence of the sensor design
- 2. Can be removed for visualization purposes by reprojecting the image onto a map
- 3. Do not affect science algorithms that run on a pixel-bypixel basis or within one earth scan
- 4. Are also present on next generation of operational polar orbiting imagers (VIIRS on NPP/JPSS-1)

Growth of MODIS 1 km pixel with scan angle

Inter-band Registration

Nominal MODIS inter-band registration

MODIS Geolocation

Earth locations computed for every 1000 meter pixel (WGS84):

- Geodetic latitude (degrees, -90S to +90N)
- Geodetic longitude (degrees, -180W to +180E)
- Sensor zenith and azimuth (degrees, pixel to sensor)
- Solar zenith and azimuth (degrees, pixel to sun)
- Terrain height above geoid (meters)
- Land/Sea mask
 - 0: Shallow Ocean
 - 1: Land
 - 2: Ocean Coastlines and Lake Shorelines
 - 3: Shallow Inland Water
 - 4: Ephemeral (intermittent) Water
 - 5: Deep Inland Water
 - 6: Moderate or Continental Ocean
 - 7: Deep Ocean

MODIS Ocean Applications

OCEAN-SOLAR RADIATION

EOS

Atmospheric correction is critical for ocean color

 L_w – only 5% of signal reaching satellite: rest due to L_p L_p components: molecular (Rayleigh) & aerosols

MODIS Ocean Products

Geophysical Parameter Name	Description
nLw_412	Normalized water-leaving radiance at 412 nm
nLw 443	Normalized water-leaving radiance at 443 nm
nLw_488	Normalized water-leaving radiance at 488 nm
nLw_531	Normalized water-leaving radiance at 531 nm
nLw_551	Normalized water-leaving radiance at 551 nm
nLw_667	Normalized water-leaving radiance at 667 nm
Tau_869	Aerosol optical thickness at 869 nm
Eps_78	Epsilon of aerosol correction at 748 and 869 nm
Chlor_a	OC3 Chlorophyll a concentration
K490	Diffuse attenuation coefficient at 490nm
Angstrom_531	Angstrom coefficient, 531-869 nm
SST	Sea Surface Temperature: 11 micron
SST4	Sea Surface Temperature: 4 micron (night only)

Chlorophyll

August 10, 2003

Strong absorption of the blue light by phytoplankton in chlorophyll-rich waters results in low water-leaving radiance in the blue bands. Dominant band shifts from blue to green with increasing chlorophyll concentration.

Index of the change in spectral shape shape chlorophyll

March 23, 2008 MODIS Aqua Northeast USA and Canada

Chlorophyll concentration

True color

Ocean currents near Southern Africa

Agulhas & Benguela Currents

27° 23 24 25° 26° 28°

27° 23° 24 25° 26° 28° 29 30°

Aqua MODIS Sea Surface Temperature, April 2004

Aqua MODIS Chlorophyll Concentration, April 2004

MODIS Land/Surface Applications

MODIS Land Products

- MOD 09 Land Surface Reflectance
- MOD 10 Snow Cover
- MOD 11 Land Surface Temperature & Emissivity
- MOD 12 Land Cover/Land Cover Change
- MOD 13 Gridded Vegetation Indices (NDVI & EVI)
- MOD 14 Thermal Anomalies (Fires)
- MOD 15 Leaf Area Index & FPAR
- MOD 16 Evapotranspiration
- MOD 17 Net Photosynthesis and Primary Productivity
- MOD 29 Sea Ice Cover
- MOD 43 Nadir BRDF Adjusted Reflectance
- MOD 44 Vegetation Cover Conversion

LAND-SOLAR RADIATION

EOS≣

Atmospheric scattering is removed to retrieve surface properties

Terra MODIS 09/09/2003 01:27UTC 03:04UTC

Normalized Difference Vegetation Index

South East Australia

Nov 2003 Spring

Apr 2004 Fall

BRDF Example

Gap-driven BRDF (Forest): shadow-driven reflectance

Black spruce forest in Canada. Left, looking away from the sun Right, looking towards the sun

Surface Reflectance

Nadir BRDF-Adjusted Reflectance

NDVI 0.0 1.0

NIR (0.10-0.45) Red (0.0-0.1) Green (0.0-0.15)

Canadian Ice Service integrates MODIS into operational data stream for ice monitoring

- CIS data suite includes RadarSat and Envisat (SAR); AMSR, QuikScat and SSM/I (microwave); MODIS, OLS, NOAA and GOES (visible images).
- •MODIS supplements SAR data in clear sky conditions.
- 250 meter resolution true color GeoTIFF images are obtained daily from SSEC for Great Lakes, Hudson Bay, Labrador coast, and Gulf of St. Lawrence.

MODIS helps to define ice boundary along southern Prince Edward Island

MODIS DB image 2006/02/18 15:26 UTC

CIS Ice Analysis 2006/02/18

LAND - THERMAL RADIATION

LSTs retrieved from Terra and Aqua MODIS data on data days 176-177 and 185-190 (06/25-26 & 07/4-9) to show spatial distribution of the diurnal variation

daytime Aqua

300,50

nighttime Aqua

Institute for Computational Earth System Science University of California, Santa Barbara 260.00

Z. Wan - 10

341.00 K

MODIS True Color

MODIS Land Surface Temperature

MODIS Active Fire Detection

- The algorithm considers the spectral signature (in middle and thermal infrared) of each pixel and compares it to the non-burning surrounding pixels
- The natural variability of the surrounding background is taken into account
- Fewer false detections than traditional threshold-based algorithms
- Sensitive enough to detect small fires

MODIS Atmosphere Applications

MODIS Atmosphere Product Flowchart

ATMOSPHERE-SOLAR RADIATION

EOS

C351.008 5/93

MODIS Cloud Mask

- 1 km spatial resolution day & night, (250 m day)
 - & 19 spectral bands (0.55-13.93 μm, incl. 1.38 μm)
 - 11 individual spectral tests (function of 5 processing paths) combined for initial pixel confidence of clear
 - **%** temporal consistency test over ocean, desert (nighttime); spatial variability test over ocean
- 48 bits per pixel including individual test results and processing path
- Result classes are

Confident Clear, Probably Clear, Uncertain, Cloudy

MODIS Cloud Optical Properties

MODIS observations at 0.66, 0.86, 1.6, 2.1, and 3.7 microns contain information about the cloud droplet size and optical properties.

Monthly Mean Cloud Optical Thickness

Cloud Optical Thickness (Water)

Monthly Mean Cloud Effective Radius

Cloud Effective Radius (Water)

MODIS Aerosol Product

- Separate aerosol retrieval algorithms for land and water
- Algorithm matches observed reflectances to a lookup table of precomputed reflectances for a wide variety of aerosol conditions
- Over land, atmospheric and land surface reflectance are separated by estimating the surface contribution from the measured reflectance at 2.13 microns for dark targets
- Final land products include aerosol optical thickness at 0.47, 0.56, and 0.65 microns at 10-km spatial resolution, and the fine mode (radius 0.6 micron) fraction of the aerosol optical thickness at 0.56 microns
- Over ocean the surface contribution to the total reflectance is small and can be calculated
- Retrieved aerosol products are represented by the best fits between observed reflectance and the lookup table
- Ocean products include aerosol optical thickness at 0.47, 0.56, 0.65, 0.86, 1.24, 1.64, and 2.13 microns at 10-km spatial resolution, effective radius of the particle population, and fine mode fraction

Monthly Mean Aerosol Optical Thickness

Aerosol Optical Thickness (Fine Mode)

0.1

0.0

MODIS IDEA-I Product for 2010/06/04

ATMOSPHERE - THERMAL RADIATION

0.5

1000

0.0

1.5

1.0

WEIGHTING FUNCTION

1000

0.0

0.5

0.0 WEIGHTING FUNCTION

1000

1.0

0.5

WEIGHTING FUNCTION

Four Panel Zoom of Cloud-Free Orographic Waves revealed in Water Vapor Imagery

Aqua MODIS True Color Image: 2010/06/04

Note land, ocean, and sunglint surfaces, and mix of high clouds, low clouds, and fog.

MODIS Cloud Mask Product (MOD35)

Clear and Cloudy Sky (everywhere)

Day/Night

1 km resolution

Fuzzy logic spectral tests

MODIS Cloud Top Pressure Product (MOD06)

Cloudy Sky Only

Day/Night

5 x 5 km resolution

CO₂ slicing algorithm

MODIS Cloud Phase Product (MOD06)

Cloudy Sky Only

Day/Night

5 x 5 km resolution

Threshold Algorithm

MODIS Water Vapor Product (MOD07)

Clear Sky Only

Day/Night

5 x 5 km resolution

Statistical Algorithm

MODIS Cloud Top Properties Level 3 Products March 2004

End of Part One