Intro to High Spectral Resolution Infrared Satellite Measurements Part 1: Understanding the Spectra

Hampton University 8 June 2017

Dave Tobin UW/CIMSS/SSEC

Earth's Energy Budget

Balance between the incoming (solar) radiation and the outgoing (reflected solar and emitted infrared) radiation

Outgoing Longwave Radiation (OLR) example Mean OLR observed by the Earth Radiation Budget Satellite (ERBS) for April 1985

Planck's Law of Blackbody Radiation

Top-of-Atmosphere Radiance Spectrum, Clear sky example

Top of Atmosphere Brightness Temperature Spectrum

Outline

- Molecular Spectroscopy
- Absorption and Emission
- Radiative Transfer
- Various Spectra and Spectral Signatures

Types of molecules:

The molecular structures define the allowable energy levels, which then determines the positions of the absorption lines in the spectrum:

Degrees of freedom:

- nuclear
- electronic
- vibration
- rotation
- kinetic

relevant in the infrared

• spin

Dipole Moments:

•There must be a change in the molecule's net charge distribution for light to be emitted/ absorbed (Stephens, p 88)

Water vapor:

Large dipole moment in equilibrium configuration

Carbon Dioxide:

No dipole moment in equilibrium configuration, but ...

Vibration/rotation can induce a dipole

Rotational Energy:

•Rigid Rotor Approximation

• Classically:

angular momentum =
$$\vec{L} - \vec{J} \vec{w}$$

moment
velocity
of inertia
interioral energy = $\vec{E}_r = \vec{L} = \frac{1}{2}\vec{J}\vec{J}^2$
+ \vec{L} is continuous +

•Quantum Mechanics:

$$L = t \sqrt{J(J+1)} \quad \text{with } J = 0, 1, 2, 3, \dots$$

$$E_{rJ} = B J(J+1) = 0, 2B, 6B, 12B, \dots$$
rotational constant" = $\frac{1}{8}\pi^{2}cI$

• Non-Rigid Rotor (i.e. stretchy):

$$E_{r_{J}} = BJ(J+I) - D[J(J+I)]^{2} \qquad \text{w.t.} \quad D = \frac{48^{2}}{10^{2}}$$

centrifugal distortion
term

• CO2 example:

$$V' = resonant frequency of a SHO$$

$$= (J + \frac{1}{2})V' \quad with \qquad U = 0, 1, 2, 3 \dots$$

$$Evib = h V = (U + \frac{1}{2})hV'$$

$$\frac{4 \text{ vibrational modes}}{4 \text{ vibrational modes}} \qquad selection nules}$$

$$O - C - O = V' = 1337 \text{ cm}^{-1} \qquad \text{not infrared} \\active \\ (no change indipole]$$

$$O - C - O \qquad V' = 667 \text{ cm}^{-1} \qquad \Delta J = \pm 1$$

Figure A.6: The energy levels and transitions of a $\Pi - \Sigma$ transition. In the Σ state, there is no vibrational angular momentum ($\ell = 0$) and therefore no ℓ -type doubling. The vibrational wavefunction is symmetric so the only remaining rotational energy levels are those of even J values. In the Π state, $\ell=1$, resulting in ℓ -type doubling. Because the vibrational wavefunction is asymmetric, every symmetric ℓ -type doubled level does not exist, leaving one rotational level for each J value. Note that there is no J=0 level because $\ell=1$.

Figure 3: A Typical Perpendicular Band: the 10001 \leftarrow 01101 Transition. The P and R-branches are similar to those of a parallel band. The Q-branch is positioned at the vibrational frequency of 720 cm⁻¹ and is not just one spectral line, but many positioned right next to each other.

Figure D.3: Fundamental $v_2 H_2^{16}O$ transitions for $\Delta J=1$ and $|J| \leq 3$.

Spectral Lines:

• Line parameters

= OF/h Vo ~ gie Ei/Ki

S

- Common Lineshape • Dopp
 - Lorentz:

$$V_{0} = " \text{ line center"} = \Delta E/h$$

$$V_{0} = " \text{ line width"}$$

$$S = " \text{ line strength"} = \int k(v) dv$$
es:
oler:
$$k(v) = \frac{S}{V_{0}} \sqrt{\frac{hz}{\pi}} e^{-\frac{hz}{V_{0}} \left(\frac{v-v_{0}}{v_{0}}\right)^{2}}$$

$$k(v) = \frac{S}{V_{0}} \sqrt{\frac{hz}{\pi}} e^{-\frac{hz}{V_{0}} \left(\frac{v-v_{0}}{v_{0}}\right)^{2}}$$

$$k(v) = \frac{S}{\pi} \left(\frac{V_{1}}{(v-v_{0})^{2} + V_{1}^{2}}\right) \text{ collisions}$$

$$V_{1} = \int absorber V_{0} + \int breadener V_{0}$$

$$V_{1} \prec V_{296K} \left(\frac{T_{0}}{T}\right)^{\frac{K}{2}} \left(\frac{P}{P_{0}}\right)$$

k(v)

Layer Atmospheric Transmission and Emission

Total transmittance \mathfrak{T} from a layer at z altitude to the TOA.

Is the transmission of that layer, times the transmission of all layers above

TOA LAYER ATTENUATED ATMOSPHERIC EMISSION	
51 km (1- τ (ν , p_1)) B(ν , T_1) S (ν , p_0)	
40.6 km ⁽¹⁻ τ (ν, p ₂)) B(ν, T ₂) S (ν , p ₁)	
33.5 km (1- τ (v, p ₃)) B(v , T ₃) S (v , p ₂)	
28.4 km ^{(1- τ (v, p₄)) B(v, T₄) S (v , p₃)}	
24.4 km ^{(1-τ(v, p₅)) B(v, T₅) S (v, p₄)}	
21.4 km ^{(1-τ(v, p₆)) B(v, T₆) S (v, p₅)}	
18.4 km ^{(1, τ (v, p₇)) B(v, T₇) S (v, p₆)}	
16 km (1- τ (ν , p_{8})) B(ν , T_{8}) S (ν , p_{7})	
13.8 km ^{(1, τ (v, p_g)) B(v, T_g) S (v, p_g)}	
11.9 km ^{(1- τ (ν, p_{10})) B(ν, T_{10}) S (ν, p_{9})}	
10.2 km ^{(1-τ(v, p₁₁)) B(v, T₁₁) S (v, p₁₀)}	
8.6 km (1- τ (ν , p_{12})) B(ν , T_{12}) S (ν , p_{11})	
7.2 km (1- τ (v, p ₁₃)) B(v, T ₁₃) S (v , p ₁₂)	
5.9 km (1-τ(ν, p ₁₄)) B(ν, T ₁₄) S (ν, p ₁₃)	Le Le un understatistich af part of haven with the same
4.6 km (1-τ(ν, p ₁₅)) B(ν, T ₁₅) S (ν, p ₁₄)	U.L.U. H
3.5 km (1-τ(ν, p ₁₆)) B(ν, T ₁₆) 3 (ν, p ₁₅)	III III Summer Marine Marine Marine
2.5 km (1-τ(ν, p ₁₇)) B(ν, T ₁₇) S(ν, p ₁₆)	U. A. U. M. W. W. HAPPAPART MANY M. MANNELL
1.6 km $(1-\tau(v, P_{10})) B(v, T_{10}) S(v, P_{17})$	H-A-UL ULWARD HAMPING MANAGEMENT
0.8 km (1-τ(ν, p ₁₉)) Β(ν, T ₁₉) S(ν, p ₁₈) <u></u>	He_A.M. Himmer Hiller Transmission and
0.2 km (۱- τ (ν, p ₂₀)) Β(ν, T ₂₀) S (ν , p ₁₉) مى الارتىك مى المار م	H-A-M-M- Harrow Harrow was
0 km (1- τ (v, p ₂₁)) B(v, T ₂₁) S (v , p ₂₀)	
11.5 μ 12 μ 12.5	и 13 µ 13.5 µ 14 µ 14.5 µ 15 µ

TOA layer attenuated atmospheric Emission:

This is the emission that is received at the satellite <u>from each layer</u> after attenuation through next (upper) layers.

 $R_i = (1 - \tau_i) B_i \mathfrak{I}_{(i-1)}$

 $R_{22} = (1 - \tau_{22}) B_{22} \mathfrak{S}_{21}$

Total emission received by the satellite from all layers of the atmosphere:

Equals the summation of the attenuated emission from each layer :

$$R \uparrow = \sum_{i=1}^{n} (1 - \tau_i(v, z_i)) B_i(v, Ts_i) \mathfrak{S}_i(v, z_i)$$

 (Ts_i) is surface temperature v = frequency(spectral band)n = number of layers

This is equivalent to:

$$R \uparrow = \sum \mathbf{B}_i \left(\mathfrak{T}_{i-1} - \mathfrak{T}_i \right)$$

Example of the summation of attenuated emission from 4 layers:

Example of decomposition of one term

$$(1 - \tau_3)\tau_2\tau_1B_3 = (\tau_2\tau_1 - \tau_3\tau_2\tau_1)B_3 = (\mathfrak{I}_2 - \mathfrak{I}_3)B_3$$

Hence, the radiance at the TOA integrated over the atmospheric column is:

$$R \uparrow = \sum_{i=1}^{n} (\mathfrak{I}_{i-1}(\upsilon, p) - \mathfrak{I}_{i}(\upsilon, p)) B_{i}(\upsilon, p) \equiv \int B_{i} d\mathfrak{I}_{i} \equiv \int B_{i} \frac{d\mathfrak{I}_{i}}{dp} dp$$

 $R_s = \varepsilon_s B(\upsilon, T_s) \mathfrak{S}_s(\upsilon, z_s)$

Weighting Functions

Moisture Weighting Functions

High spectral resolution advanced sounder will have more and sharper weighting functions compared to current GOES sounder. Retrievals will have better vertical resolution.

High Spectral Resolution

Sampling over rotational bands

AERI SYSTEMS AROUND THE WORLD

U Idaho P-AERI - 1 (Antarctica)

IMG spectrum (WINCE, 970128 over Nebraska) and HITRAN database

Resolving absorption features in atmospheric windows enables detection of temperature inversions

Detection of inversions is critical for severe weather forecasting. Combined with improved low-level moisture depiction, key ingredients for night-time severe storm development can be monitored. 40

Twisted Ribbon formed by CO₂ spectrum: Tropopause inversion causes On-line & off-line patterns to cross

Inferring surface properties with AIRS high spectral resolution data Barren region detection if T1086 < T981 T(981 cm⁻¹)-T(1086 cm⁻¹)

Barren vs Water/Vegetated

CrIS and IASI Obs of Calbuco volcano eruption on 4/23/2015 @ 0509 UTC

Dust and Cirrus Signals

Imaginary Index of Refraction of Ice and Dust

• Both ice and silicate absorption small in 1200 cm⁻¹ window

• In the 800-1000 cm⁻¹ atmospheric window:

Silicate index increases

Ice index *decreases*

with wavenumber

Volz, F.E. : Infrared optical constant of ammonium sulphate, Sahara Dust, volcanic pumice and flash, Appl Optics **12** 564-658 (1973)

Mt Etna volcanic plume SO2 (left) from 1284-1345 Ash (right) from 832-900

