

Level-2 sounding retrieval generation algorithms and severe weather applications

CSPP (Community Satellite Processing Package) is a collection of software systems for processing data from meteorological satellites.

The primary goal of CSPP is to support users who

- Receive satellite data via direct broadcast;
- Create Level 1B and higher level products and images in real time.

Funding is supplied by JPSS and NOAA.

CSPP Satellite/Sensor/Product Matrix

Satellite	Multispectral Imager	Infrared Sounder	Microwave Sounder
Suomi NPP	VIIRS SDRs (Level 1B), Images, Visualization, Clouds, Aerosols, Land, Ocean	CrIS SDRs (Level 1B) Atmospheric Profiles, Clouds, Visualization	ATMS SDRs (Level 1B), Atmospheric Profiles, Precipitation, Visualization
NOAA-18/19	AVHRR Clouds, Aerosols, Land Surface, SST, Visualization	HIRS Atmospheric Profiles	AMSU, MHS Atmospheric Profiles, Precipitation
Metop-A/B	AVHRR Clouds, Aerosols, Land Surface, SST, Visualization	IASI Atmospheric Profiles, Clouds, Visualization	AMSU, MHS Atmospheric Profiles, Precipitation
Terra	MODIS Images, Visualization	N/A	N/A
Aqua	MODIS Images, Visualization	AIRS Atmospheric Profiles, Clouds, Visualization	AMSU Atmospheric Profiles, Precipitation, Visualization

First HU SNPP Direct Broadcast Image

Below is the first SNPP VIIRS (Visible Infrared Imager Radiometer Suite) true color visible image acquired using the new HU DBS receiving system (September 28, 2016) (17:17:28 UTC)

HU Direct Broadcast VIIRS True Color Image of Hurricane Matthew (10/5/2016 2:30 EDT)

HU Direct Broadcast MODIS Images Hurricane Matthew (10/6/2016 2:15 PM EDT)

New Era: Spaceborne Ultraspectral Resolution

Multi-spectral to Ultra-spectral

Profile Information Content

Information Content Ratio: Ultra-spectral / Multi-spectral = 3-4

Retrieval Accuracy Vs Spectral Resolution

(i.e., number of spectral radiance observations)

The vertical resolution and accuracy increases greatly going from multi-spectral to ultra-spectral resolution. The improvement in ultra-spectral performance is proportional to the square root of the number of channels (i.e., S/N)

Polar-Orbiting Ultra-Spectral Sounders

Instrument	AIRS	IASI	CrIS	
Satellite	EOS Aqua	Metop-A, Metop-B	Suomi-NPP	
Туре	Grating Spectrometer	Michelson Interferometer	Michelson Interferometer	
Spectral resolution	0.5 – 2 cm ⁻¹	0.25 cm ⁻¹	0.625 (LW), 1.25 (MW), 2.5 cm ⁻¹ (SW)	
Spectral range	650 – 2670 cm ⁻¹ (15.4 – 3.7 μm)	645 – 2760 cm ⁻¹ (15.5 – 3.62 μm)	650 – 2550 cm ⁻¹ (15.4 – 3.9 μm)	
Number of Detectors/ Channels	4756 / 2378	12 / 8461	27 / 1305	
NEDT range	0.05 - 0.5 K	0.1 – 0.75 K	0.05 – 0.5 K	
Spatial Resolution (at nadir)	13.5 km	12 km	14 km	
Launched	2001	2006, 2012	2011	

The Ultraspectral Satellite System – Metop-A, Metop-B, Aqua, and S-NPP

Satellite	Altitude (Km)	Period (min)	Equator crossing Time	Node
Metop-A	817	101	09:31	Descending
Metop-B	817	101	10:28	Descending
Aqua	708	98.4	13:30 +/-25	Ascending
S-NPP	830	101	13.30+/-25	Ascending

NPP	13056.3500	7202.24	98.74	101.44	824.24
AQUA	13056.7609	7077.79	98.23	98.83	699.79
METOPA	13056.5944	7195.54	98.67	101.30	817.54
METOPB			98.72		817.62

METEOROLOGICAL SATELLITES 15:57 UT 23 FEB 13

Hyperspectral Retrieval Software in CSPP

University of Wisconsin-Madison CrIS, AIRS and IASI Hyperspectral Retrieval Software (latest version April 2014)

HSRTV Dual-Regression

NOAA Unique CrIS/ATMS Processing System (NUCAPS) EDR Software Version 1.0 Release (February 2015)

NUCAPS

Dual-Regression (UW/CIMSS)	NUCAPS (NOAA)
Research	Operational
Regression solution	Optimal estimation solution
Optimized for speed	Optimized for accuracy
Infrared only	Infrared plus microwave
Single FOV resolution (~14 km at nadir)	3x3 array (~50 km at nadir)
No retrievals below thick clouds	Retrievals below clouds
Multi-instrument (AIRS, IASI, CRIS)	Single instrument (CrIS)

"Dual-Regression" Retrieval Algorithm* Overview

* Smith, W. L., E. Weisz, S. Kirev, D. K. Zhou, Z. Li, and E. E. Borbas (2012), Dual-Regression Retrieval Algorithm for Real-Time Processing of Satellite Ultraspectral Radiances. J. Appl. Meteor. Clim., 51, Issue 8, 1455-1476.

Sounding retrievals provide quantitative interpretation of satellite imagery

CrIS CTH Comparison with CALIPSO (26 Sept 2012)

CALIOP (2012-09-26T21-58-07ZD) Total Attenuated Backscatter 532 nm, CrIS granule 23:00 UTC

Poor Sounding Vertical Resolution Causes Problem with Direct Assimilation of Satellite Profiles

Filter Sounders (e.g., HIRS)

Interferometer Sounders (e.g.CrIS)

<u>How Can We Transform Radiances</u> <u>to Vertical Profiles?</u>

Prof. Verner Suomi, the "Father of Satellite Meteorology", provided the answer many years ago. He said the problem of satellite profile retrieval is similar to that of trying to separate the Yolk from the White in a scrambled egg.

The answer: Feed the scrambled egg back to the chicken

Spectral Radiances

Models

Vertical Profiles

De-Aliasing Using Forecast Model Profile

Problem: DR method uses a global statistical training data set. Imperfect skill, due to lack of vertical resolution in radiances leads to a vertical aliasing error.

Solution: Calculate radiance spectrum from forecast profile (FP) and perform DR retrieval using simulated forecast radiances.

May 19 Vs. May 22, 2017

May 19, 2017 Hampton Roads Area

850 hPa Temperature

500 hPa Temperature CrIS Rapid Update Model CrIS Rapid Update Model RAP 500 hPa Temp (K) overlaying VIIRS 05 (20170519 1746) CrIS 850 hPa Temp (K) overlaying VIIRS 05 (20170519 1746) RAP 850 hPa Temp (K) overlaying VIIRS 05 (20170519 1746) CrIS 500 hPa Temp (K) overlaying VIIRS 05 (20170519 1746) -----Lonaitud Lonaitude Lonaitude CrIS 500 hPa Hum (g/kg) overlaying VIIRS 05 (20170519 1746) RAP 500 hPa Hum (g/kg) overlaying VIIRS 05 (20170519 1746) RAP 850 hPa Hum (g/kg) overlaying VIIRS 05 (20170519 1746) CrIS 850 hPa Hum (g/kg) overlaying VIIRS 05 (20170519 1746) Longitude CrIS **Rapid Update Model** CrIS Rapid Update Model

850 hPa Absolute Humidity

500 hPa Absolute Humidity

May 22, 2017 Hampton Roads Area

850 hPa Absolute Humidity

500 hPa Absolute Humidity

Lifted Index Stability Parameter

The **lifted index** (**LI**) is the temperature difference between an air parcel lifted adiabatically Tp(p) and the temperature of the environment Te(p) at a pressure height in the troposphere of 500 hPa (mb). When the value is positive, the atmosphere (at the respective height) is stable and when the value is negative, the atmosphere is unstable.

Thunderstorm Potential:

< -5 Very Unstable: Strong Thunderstorm Potential
-3 to -5 Unstable: Thunderstorm Probable
0 to -2 Marginally Unstable: Thunderstorms Possible
>0: Stable: Thunderstorms Unlikely

Lifted Index

2

ο

-2

4

-6

-8

-10

-12

CrIS Lifted Index overlaying VIIRS 05 (20170519 1746)

CrIS Lifted Index overlaying VIIRS 05 (20170522 1830) $_{76^{\circ}W}$

35'N

RAP Lifted Index overlaying VIIRS 05 (20170522 1830)

SNPP CrIS June 4, 2017 (17:46 UTC)

VIIRS Cloud Mask

probably clear probably cloudy confident cloudy confident clear

36 N

Using Stability Tendency to Predict Severe Convection

HU DBS Sounding Development

Improve Localized Severe Weather Warnings

- Real-time CrIS Sounding Products
- Real-time IASI Sounding Products & IASI/CrIS sounding and stability (1-3 hr) time derivatives
- GOES-16 ABI DR Retrieval Enacements
 - 15-km horizontal resolution to 2-km ABI res.
 - 1 to 10-hr time resolution to 15 min ABI res.
- Weather Research Forecast (WRF) Model
 - 2-km resolution
 - Assimilate 15-min interval DBS soundings