AIRS (Atmospheric Infrared Sounder) Regression Retrieval (Level 2)

Level 0 to Level 2

Level 0: raw data

Level 1A: geolocated radiance in counts

Level 1B: calibrated radiance in physical units

Level 2: retrieved physical variables

(temperature, humidity and ozone profiles, surface skin temperature, total precipitable water, total ozone content, cloud top height . . .)

Regression Model

1. Regression Model

 $X = C Y^T$

2. Least squares regression solution

$$C = X Y (Y^T Y)^{-1}$$

Y...measurements [nprofs x nchannels]

- C...Regression coefficients [nlevels x nchannels]
- X... Atmospheric variables [nlevels x nprofs]

Regression Retrieval (1)

1. Calculate Regression Coefficients

$$C = X_{tr} Y_{tr} (Y_{tr}^{T} Y_{tr})^{-1}$$

2. Perform Retrieval (RTV)

 $X = C Y^T$

Y... Measurements [nprofs x nchannels]

- C ... Regression coefficients [nlevels x nchannels]
- X ... Atmospheric variables [nlevels x nprofs]

Subscript tr refers to trainingset

Regression Retrieval (2)

1. Calculate Regression Coefficients

$$C = \Delta X_{tr} \Delta Y_{tr} (\Delta Y_{tr}^{T} \Delta Y_{tr})^{-1}$$
with
$$\Delta X_{tr} = X_{tr} - \text{mean}(X_{tr})$$

$$\Delta Y_{tr} = Y_{tr} - \text{mean}(Y_{tr})$$

2. Perform Retrieval (RTV)

$$\Delta X = C \ \Delta Y^{T} \text{ or } X = \text{mean}(X_{tr}) + C \ \Delta Y^{T}$$
with
$$\Delta X = X - \text{mean}(X_{tr})$$

$$\Delta Y = Y - \text{mean}(Y_{tr})$$

Principal Components (PC) Regression Retrieval

1. Calculate Regression Coefficients

 $M = Cov(Y_{tr})$ U = eig(M) $A_{tr} = \Delta Y_{tr} U$ $C = \Delta X_{tr} A_{tr} (A_{tr}^{T} A_{tr})^{-1}$

2. Perform Retrieval (RTV)

$$X = mean(X_{tr}) + C A^{T}$$

with
$$A = \Delta Y U, \quad \Delta Y = Y - mean(Y_{tr})$$

- M... covariance matrix [nchannels x nchannels]
- U ... First few eigenvectors of M [nchannels x npc]
- A ... Projection Coefficients (or amplitudes) [nsamples x npc]

The Trainingset

X_{tr} ... Representative set of atmospheric variables including temperature, moisture, ozone, surface pressure, surface skin temperature and surface skin emissivities

Y_{tr} . . . Corresponding set of simulated radiances, calculated by a fast RT (radiative transfer) forward model

Radiance received by AIRS

$$R_{\nu} = \tau_{s\nu} \cdot \varepsilon_{s\nu} \cdot B_{\nu}(T_{s})$$

+ $\int_{p_{s}}^{0} B_{\nu}(T(p)) d\tau_{\nu}(p)$
- $\tau_{s\nu} \cdot r_{s\nu} \cdot \int_{p_{s}}^{0} B_{\nu}(T(p)) d\tau_{\nu}^{*}(p)$
+ $R_{\nu}^{sun} \cdot \cos(\theta) \cdot \tau_{s\nu}^{sun}(p_{s}) \cdot r_{\nu}^{sun}$

- ← Upwelling IR radiation from surface
- ← Upwelling IR radiation from atm. layers
- Reflected downwelling IR radiation
- ← Reflected solar radiation

R...radiance, *v*...wavenumber, *s*...surface, *p*...pressure, *sun*...solar,

- *T...*temperature, *B...*Planck function, *ε*...emissivity,
- τ ...level to space transmittance, θ ...local solar zenith angle
- *r*...reflectivity, with $r = (1 \varepsilon)/\pi$,
- τ^* ...level to surface (downwelling) transmittance [$\tau^* = \tau_v^2(p_s)/\tau_v(p)$]

Fast Radiative Transfer Forward Model

- Fast Model Regression :
 - Computation of line-by-line Transmittance τ for FM training data set
 - Convolve with AIRS SRF (spectral response function)
 - Solve regression scheme τ = AC for coefficients C using predictors A (predictors are functions of T, p, absorber amount, scanang ...)
- Calculate transmittance $\tau\,$ for any other profile
- Solve RTE to get radiance R_v

IMAPP AIRS Regression Retrieval Results:

Comparison with co-located radiosonde observations (RAOBs)

Co-located RAOB / AIRS single profile retrieval (RTV)

Co-located RAOB / AIRS single profile retrieval (RTV)

Co-located RAOB / AIRS retrieval statistics (1899 profiles)

Co-located RAOB / AIRS retrieval statistics (1899 profiles)

Radiosonde Observations

IMAPP AIRS Regression Retrieval Results:

Global (240 granules) retrievals and retrievals over the CIMSS direct broadcast area

Globally Retrieved Temperature at 850 mbar

Descending Grans

Temperature [K] at 852.788 mbar

Descending Granules (09-06-2002)

Temperature [K] at 852.788 mbar Ascending Granules (09-06-2002)

Without Cloudmask

300 290 280 270 260 250 240 230 220

300

290

280

270

260

250

240

230

220

Temperature [K] at 852.788 mbar Descending Granules (09-06-2002)

Temperature [K] at 852.788 mbar Ascending Granules (09-06-2002)

With Cloudmask

Globally Retrieved Moisture at 850 mbar

15

10

5

15

10

5

Ascending Grans

Humidity [g/kg] at 852.788 mbar Ascending Granules (09–06–2002)

Without Cloudmask

Humidity [g/kg] at 852.788 mbar Descending Granules (09–06–2002)

Humidity [g/kg] at 852.788 mbar Ascending Granules (09–06–2002)

With Cloudmask

CIMSS Direct Broadcast area: AIRS measurements (10-23-2003)

Temperature [K] at 700 mbar Humidity [g/kg] at 700 mbar (no cloudmask) (no cloudmask) Humidity [g/kg] at 706.6 mbar Ascending Granules (10–23–2003) Temperature [K] at 706.6 mbar Ascending Granules (10-23-2003) Bà and a

Total Precipitable Water [cm] Surface Skin Temperature [K] (no cloudmask) (no cloudmask) TPW [cm] Ascending Granules (10–23–2003) Surface Skin Temperature [K] Ascending Granules (10-23-2003) a and a

Total Ozone [Dobson Units] Ozone [ppmv] at 9.5 mbar (no cloudmask) (no cloudmask) Total Ozone [dobsons] Ozone [ppmv] at 9.5 mbar Ascending Granules (10-23-2003) Ascending Granules (10-23-2003) > c

IMAPP AIRS Regression Retrieval Results:

Comparison with ECMWF analysis fields

ECMWF ANL

Without Cloudmask

With Cloudmask

AIRS RTV vs. ECMWF Analysis: Humidity at 750 mbar and at selected pixel

AIRS RTV vs. ECMWF Analysis: Humidity along scanline 65 (without cloudmask)

AIRS RTV vs. ECMWF Analysis: Humidity along scanline 65 (with cloudmask)

RMS and STDEV of <u>ECMWF minus AIRS RTV</u> (G192, 09-02-2003, 4758 clear pixels)

AIRS RTV vs. ECMWF Analysis: Spatial mean of Brightness Temperature (BT) residual

IMAPP AIRS Retrieval

ECMWF Analysis

AIRS Retrieval Mean LW |Obs-Calc| [K] Mean MW |Obs-Calc| [K] Mean SW |Obs-Calc| [K] 3.5 3 **AIRS RTV** 2.5 2 1.5 1 0.5 n **ECMWF** Analysis Mean LW |Obs-Calc| [K] Mean MW |Obs-Calc| [K] Mean SW |Obs-Calc| [K] **ECMWF Analysis** 3.5 3 2.5 2 1.5

Mean Long Wave

Mean Mid Wave

Mean Short Wave

1

0.5

IMAPP AIRS Regression Retrieval Results:

Comparison with ECMWF analysis fields and L2 operational product

AIRS RTV vs. ECMWF Analysis vs. Operational Product: Temperature at 500 mbar (G192, 04-04-2004)

IMAPP AIRS RTV

ECMWFANL

Operational AIRS RTV

• available on AMSU footprint (=3x3 AIRS FOVs) only

 missing areas → retrieval not successful or not validated yet

AIRS RTV vs. ECMWF Analysis vs. Operational Product: Temperature at selected pixel

AIRS RTV vs. ECMWF Analysis vs. Operational Product: Humidity at 600 mbar (G192, 04-04-2004)

RTV

- available on AMSU footprint (=3x3 AIRS FOVs) only
- missing areas → retrieval not successful or not validated yet

AIRS RTV vs. ECMWF Analysis vs. Operational Product: Humidity at selected pixel

IMAPP AIRS Regression Retrieval Results:

Comparison with MODIS and GOES retrievals

MODIS RTV vs. AIRS RTV vs. GOES RTV: Temperature and Humidity at 620 mbar (G192, 09-02-2003)

Humidity @620

MODIS RTV

AIRS RTV

GOES RTV