

From Radiative Transfer to NASA Missions and NOAA Cooperative Institutes

Christian Kummerow Colorado State University

Global Energy and Water Exchanges

The non-homogeneous footprint dilemma

Rain Rate [mm/hr]

Tropical Rainfall Measuring Mission (TRMM) Nov. 1997 launch, 35° inclination; 402 km

TRMM Sensors

Precipitation radar (PR):

- 13.8 GHz
- 4.3 km footprint
- 0.25 km vertical res.
- 215 km swath

Microwave radiometer (TMI):

10.7, 19.3, 21.3, 37.0 85.5 GHz (dual polarized except for 21.3 V-only) 10x7 km FOV at 37 GHz 760 km swath

Visible/infrared radiometer (VIRS):

- 0.63, 1.61, 3.75, 10.8, and 12 :m at 2.2 km resolution
- Lightning Imaging Sensor (LIS)

Cloud & Earth Radiant Energy System (CERES)

Global Zonal Mean 9802

The Global Precipitation Mission

CORE SATELLITE

- Dual frequency radar
- Multifrequency radiometer
- Non-sun synchronous orbit
- ~ 70° inclination
- ~ 400 500 km altitude
- ~ 4 km horizontal resolution
- 250 m vertical resolution

CONSTELLATION SATELLITES

- 8 small satellites with microwave radiometer only*
- 3 hr revisit time
- Sun-synchronous polar orbit
- ~ 600 km altitude

*Some of the 8 small satellites may be replaced by existing radiometers (e.g., SSM/Is, AMSR, etc.)

MISSION: Understand the horizontal and vertical structure of rainfall and its microphysical elements. Provide training for constellation radiometers. MISSION: Provide enough sampling to reduce uncertainy in short-term rainfall accumulations. Extend scientific and societal applications.

PR/TMI Rainfall Differences

5-year mean Radar (2A25) - Radiometer (2A12)

Global Energy and Water Exchanges Project

GEWEX Integrated Products

CIRA's effort in Rainfall Data Fusion

Optimal Estimation of Precipitation from Gauges, Radars, Satellites and Models

8 small satellites with mid

3 hr revisit time

CORE SATELLITE CONSTELLATION SATELLITES

Dual frequency radar
Multifrequency radiometer
Non-sun synchronous or
~ 70° inclination
~ 400 - 500 km altitude
~ 4 km horizontal resolution
250 m vertical resolution

nderstand the horrertical structure of the microphysical craited accurate

Gauges

- NOAA operated gauge networks
- Community Cooperative Rain Hail & Snow Network

Radars

- Strong involvement via NOAA Physical Sciences Division (PSD) HMT
- Connection with ATS and ECE

 Strong involvement in Mission definition and algorithm development

Satellites

Models

 Strong involvement in model development at NOAA Global Modeling Division (GMD)

The data fusion effort is one that begins to link the various components into a single estimation framework intended to (a) provide the best possible precipitation for applications as well as (b) diagnosing model processes that will help improve model parameterizations leading to improved forecasts.