
Vegetation Effect on Soil Moisture Retrieval from Active Microwave Data

1. Soil Moisture and Microwave Data

• The brightness temperature and backscatter coefficient from 
microwave remote sensing data is related to soil moisture 
based on dielectric properties of soil and water.

• The relationship between backscatter coefficient and soil 
moisture becomes non-linear and complex by the presence of 
vegetation cover present on ground surface.

• The vegetation cover is the function of normalized vegetation 
difference index and vegetation optical depth.

• The microwave energy backscattered from vegetated terrain is 
highly dependent on the dielectric constant of the soil and 
vegetation, which is in turn directly affected by water content.

• Radar energy is able to operate independently of cloud cover, 
smoke and solar illumination which hardly limit the use of 
optical sensors such as SPOT and LANDSAT.

3. Soil Moisture, SAR, Optical Depth and NDVI Data  (July 12, 1997)

5. Neural Network Optimization2. Data Acquisition and Study Area

9. Future Approaches 
Development of soil moisture retrieval algorithm using a 
combination of parametric and non-parametric tools such 
as maximum likelihood, neural networks, fuzzy logic etc…

Assess the effect of normalized difference vegetation 
index (NDVI) and vegetation optical depth on the retrieval 
of soil moisture from microwave data. 

Production of qualitative and quantitative soil moisture 
maps with different levels of accuracy.

A best neural network is described as a combination of better accuracy, training 
stability and processing time. Those three parameters depend on the network size and 
the network complexity, which are the function of the number of network layers and the 
number of nodes in each layer.
To optimize the internal configuration of the neural network, the same network was run 
25 times for each architectural configuration.  The results showed that, by using two 
hidden layers with an equal number of nodes, the standard deviation of the 25 runs is 
very low.  Further, the increase of the number of hidden nodes increases the training 
and the classification time without any improvement of the overall accuracy.  The 
results indicate that better classification accuracy was reached when the number of 
hidden nodes is the same in each hidden layer.
When using a single layer, the number of nodes should be greater than the number of 
input data to get reliable results. Further, the variance of overall accuracy in 25 runs 
becomes more stable when the number of hidden nodes is less than 22.
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The study area is located in Oklahoma, USA (97d35’W, 36d15’N). One Radarsat-1 image 
acquired on July 12th, 1997 by ScanSAR Narrow Mode at an incidence angle range of 20°-39°
with a resolution of 25 m was used in this study.  The soil moisture and other vegetation data 
(NDVI, vegetation water content, vegetation b parameter, etc) were collected during SGP97 
mission have been used in this research.  The SGP97 experiment was a large, interdisciplinary 
experiment carried out in 1997 with the objective to test formerly established soil-moisture 
retrieval algorithms for the ESTAR Instrument (Electronically Scanned Thinned Array 
Radiometer) L-band passive microwave radiometer at 800-meter resolution.
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8. Preliminary Results and Discussion

7. Threshold Limit and Confusion Matrix

Confusion Matrix (Threshold = 0.6)
Class 1 Class 2 Class 3 Total Pixel

Class 1 36 1 3 40

Class 2 21 173 19 213

Class 3 4 29 116 149

Nil Pixel 14 37 47 98

Total Pixel 75 240 185 0.65

Accuracy assessment was carried out using confusion 
matrices generated from the comparison between real 
values (truth data) and predicted values (estimated data).
To avoid that the network forces the classification of all the 
pixels, we have introduced a threshold (value between 0 
and 1) to decide if a class will be assigned to the input pixel 
or if this pixel will be considered as unclassified.  Thus, a 
pixel is considered unclassified if all output values are 
lower than this threshold; otherwise the pixel is assigned 
the class corresponding to the neuron with the highest 
value.  In this project, the threshold value has been varied 
from 0.4 to 0.7.

The two following matrices show that the increase of 
threshold limit from 0.5 to 0.6 leads to more Nil pixels in the 
final soil moisture map. However, it makes more sure that 
the classified pixels have been correctly classified.
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4. Neural Network Classification Methodology 

Dept. of Civil Engineering, The City College and the Graduate Center of CUNY, Convent Avenue at 138th Street, New York, NY 10031 Phone: 212 650 8598

Tarendra Lakhankar (Ph.D. Student)  tarendra@ce.ccny.cuny.edu, Hosni Ghedira ghedira@ce.ccny.cuny.edu, Reza Khanbilvardi  khanbilvardi@ccny.cuny.edu

Textural data

SAR Data Acquisition

Calibration and Geocoding

Neural Network Model

ESTAR Soil 
Moisture Data

Optical Depth 
and NDVI

Output: 
Soil Moisture Data

Training
Validation

Confusion 
Matrix

SAR image

Methodology applied in soil moisture estimation

Simulation

Effect of the selected threshold on the
overall classification

HomogenityMeanStd Deviation Optical Depth NDVI
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6. Fuzzy Logic Method

A subtractive clustering method is also used to estimate the soil moisture from a 
combination of input data. The subtractive clustering method assumes each data point is 
a potential cluster center and calculates a measure of the likelihood that each data point 
would define the cluster center, based on the density of surrounding data points.
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The variable radii is a vector of entries between 0 
and 1 that specifies a cluster center's range of 
influence in each of the data dimensions, assuming 
the data falls within a unit hyperbox. Small radii 
values generally result in finding a few large clusters. 
The Good values for radii is estimated as 0.55 based 
on various run of model for a set of input data.

This study demonstrates a promising capability of neural network to retrieve soil moisture maps 
from active microwave data.

The influence of various parameters (NDVI, Vegetation optical depth, textural data) can be better 
understood by classifiers like neural network and fuzzy logic. 

The additions of optical depth and NDVI information to NN model have significant effect (increase 
the accuracy by ~6-10%) on the final soil moisture accuracy. 

The areas with lower NDVI values showed better classification accuracy due to less contribution 
of vegetation to the backscatter.

High optical depth and NDVI values generate more confusion in the NN prediction. 

The correlation between SAR backscattering and soil moisture is better with higher soil moisture 
content, which validates the study carried out by Wang et al. (2004) stipulating that the 
dominance of soil moisture on backscattering is higher at wet soil than dry soil.

Adding the vegetation data is important to improve the accuracy at dry soil condition, where the 
dominance of vegetation water content is higher.  

The neural network model shows higher potential to estimate soil moisture.  However, high 
variation in soil moisture estimation accuracy  has been observed at different runs of NN model.

The fuzzy logic model was also used to predict the soil moisture using the similar input data and 
gave a low variation in soil moisture estimation accuracy.

The prediction made by neural network is higher than fuzzy logic in several runs of the model, but 
we found that the prediction made by fuzzy logic is more stable in nature.

These results gave us a thought to couple these two techniques to come out with better and 
reliable method such as “neuro-fuzzy” to improve the soil moisture estimation accuracy.

The algorithm: 
o Selects the data point with the highest potential to be the first cluster center.
o Removes all data points in the vicinity of the first cluster center (as determined by 

radii), in order to determine the next data cluster and its center location.
o Iterates on this process until all of the data is within radii of a cluster center.


