

Reflections on Twenty Five Years at CIMSS

Paul Menzel

NOAA/NESDIS/ORA Cooperative Institute for Meteorological Satellite Studies (CIMSS) Madison, Wisconsin

July 2005

CIMSS has flourished because of

good leaders leading good people interesting science instruments and cal/val processing and visualization algorithms and applications multitudes of data steady sponsorship from NASA and NOAA basic research transfer to operations strong international partnerships global observing system

Verner Suomi started it all

He had some friends

UW - NOAA - NASA have been working together for many years Some early examples include:

- * first meteorological satellite experiment in 1959 Suomi's net flux radiometer on Pioneer VII
- * first geostationary satellite in 1966 Suomi and Parent's spin scan cloud camera on ATS-1
- * processing system to display, navigate, loop images McIDAS
- * archive of GOES data videocassette synched to satellite spin
- * first geostationary sounder VAS in 1981

"the clouds moved not the satellite"

Verner Suomi

In 1966, ATS-1's geostationary spin scan cloud camera provided full disk visible images of the earth and its cloud cover every 20 minutes

NOAA / NESS sends a small group to work with Suomi et al

- * The NESS Development Lab locates at UW

 Dave Small starts in 1975

 Bill Smith & Kit Hayden bring their groups to SSEC
- * First visiting scientist comes

Soundings become NESS / UW project

- * TIROS-N in 1978 became the operational polar sounder NESS DL developed the sounding software
- * VISSR Atmospheric Sounder preparations intensify Larry Sromovsky & Hank Revercomb are UW leads first geostationary sounding is made in 1981

Some of us looked different then

Bill recruits CIMSS visiting fellows from Down Under

- → FGGE produces the first global wind data sets
 - * First GARP Global Experiment in 1979
 - * Connections with European community strengthen

CIMSS formalizes UW/NESDIS arrangement with MOU

- * Vern Suomi is first Director in 1980 SSEC maintains data rich environment for CIMSS
- * Smith becomes 2nd CIMSS Director
- * ASPP formed to do NOAA Operational VAS Assessment

Meteosat water vapor tracers supplemented FGGE winds

This picture was included in 1978 Christmas Greetings from Vern Suomi to Pierre Morel

European-CIMSS connection starts early and stays strong Members of the Meteosat Family that have visited CIMSS

FGGE produces the first global wind data sets

- * First GARP Global Experiment in 1979
- * Connections with European community strengthen
- → CIMSS formalizes UW/NESDIS arrangement with MOU
 - * Vern Suomi is first Director in 1980 SSEC maintains data rich environment for CIMSS
 - * Smith becomes 2nd CIMSS Director
 - * ASPP formed to do NOAA Operational VAS Assessment

The National Aeronautics and Space Administration Presents the

Group Achievement Award

VAS DEMONSTRATION TEAM

Goddard Space Flight Center

In recognition of the implementation of a successful demonstration of the capabilities of a new atmospheric sounding system which is now being used as a baseline for the operational implementation of geosynchronous sometings.

Cooperative Intstitue for Meterological Satellite Studies(CIMSS)
University of Wisconsin

Signed and Sealed at Goddard Space Plight Center this fourth day of December, Nineteenhundred and eighty-one.

Affing Sector GSFC

CIMSS gets praise from NESDIS Administrator

William P. Bishop says in article on partnerships in remote sensing in (Nov 1986)

"...a cooperative institute (CIMSS) at the UW...has had an enormous on the geosynchronous satellites...in fact it may have had the largest impact on those satellites and their use of any single institution"

this one partnership...on three occasions (cloud winds, archive of images, and soundings from VAS)... demonstrated...the best ways in which government - academic partnerships work to enormous benefit"

- → CIMSS connects with international remote sensing family
 - * First international TOVS Study Conference in 1983
 - * China CIMSS ties strengthen with visiting scientists

High spectral IR resolution takes off

- * HIS is built and flown in 1980s
- * Interferometer almost makes it onto GOES I/M
- * NASA commits to AIRS for EOS
- * EUMETSAT starts IASI efforts

ITSC-1 leads to ITSC-14 with record audience in Beijing

The 14th International TOVS Study Conference

第 14 届国际泰罗斯业务垂直探测研讨会 (25-31 May, Beijing, China)

CIMSS-China ties have grown over 25 years

CIMSS connects with international remote sensing family

- * First international TOVS Study Conference in 1983
- * China CIMSS ties strengthen with visiting scientists
- → High spectral IR resolution takes off
 - * HIS is built and flown in 1980s
 - * Field experiments demonstrate high spectral IR data
 - * Interferometer almost makes it onto GOES I/M
 - * NASA commits to AIRS for EOS
 - * EUMETSAT starts IASI efforts

Scanning HIS

(HIS: High-resolution Interferometer Sounder, 1985-1998)

Characteristics

Spectral Coverage: 3-17 microns

Spectral Resolution: 0.5 cm⁻¹

Resolving power: 1000-6000

Footprint Diam: 1.5 km @ 15 km

Cross-Track Scan: Programmable

including uplooking zenith view

Data System Electronics Interferometer Sensor Module Pointing Motor

Applications:

- Radiances for Radiative Transfer
- Temp & Water Vapor Retrievals
- Cloud Radiative Prop.
- Surface Emissivity & T
- Trace Gas Retrievals

- → NASA joins UW and NOAA in MOU in 1989
 - * Smith, Tilford, and Pyke expand collaboration

Remote sensing and CIMSS continue to evolve

- * GOES I/M replaces VAS in 1994
- * Winds processing gets boost from Intl Winds Workshops
- * AERIs and MAERIs prove their worth on land and sea
- * First operational soundings from geo
- * Hayden retires and Smith departs in 1997

 Don Johnson becomes Director
- * NOAA plans for interferometers in leo (CrIS) and geo (GOES ABS)

GOES-I launch

Second International Winds Workshop is held in Tokyo Japan

Five geos providing global coverage for winds in tropics and mid-lats with comparable quality

AERI Retrieved IHOP water vapor time height cross sections from 12
June 2002 indicating rapid water vapor oscillations also indicated by
GPS retrieved integrated water vapor

AERI marks water vapor changes

MAERI high spectral resolution detects daytime surface skin heating in clear skies

Skimmer (green) warmer at night and cooler in day

MAERI marks solar heating of sea surface skin

↑ solar heating showing up

View from space

Oklahoma City Tornado 3 May 99

View from ground

Director Don Johnson

Kit Hayden as we remember him

- → CIMSS closes out the millennium
 - * Steve Ackerman becomes Director
 - * NASA commits to GIFTS but...
 - * EOS becomes a reality
 - * Madison skyline changes for direct reception of EOS

Since 2000

- * MODIS polar winds fill observing system gap
- * AIRS shows significant NWP impact
- * Intercalibration of IR sensors becomes state of the art
- * International community connecting through WMO

MODIS Band 2: 250 meter resolution
UW-Madison Direct Broadcast 2000/10/13 1559 UTC

CIMSS closes out the millennium

- * Steve Ackerman becomes Director
- * NASA commits to GIFTS but...
- * EOS becomes a reality
- * Madison skyline changes for direct reception of EOS

→ Since 2000

- * MODIS polar winds fill observing system gap
- * AIRS shows significant NWP impact
- * Intercalibration of IR sensors becomes state of the art
- * International community connecting through WMO

MODIS fills polar gap in wind coverage

forecast busts are mitigated

AIRS adds to GOS & provides positive NWP impact at JCSDA

Intercomparison of 2 Marine AERIs Measuring Sea Surface Temperature

16 Day Cruis e

Largest Daily Mean Difference: 0.020 K Ten Day Mean Difference: 0.005 K

Track of the R/V Roger Revelle 28 Sept. - 14 Oct. 1997

Slide 1

CALCON 2003 Radiometric Calibration of AER

AIRS Validation with SHIS

Excluding channels strongly affected by atmosphere above ER2

Cal/val of IR obs is now concerned with tenths of K, not degrees of K

High spectral IR is an important part of the reason

Summary of AIRS-MODIS mean Tb differences

Red=without accounting for convolution error Blue=accounting for convolution error with mean correction from standard atmospheres

p-p Convolution Error (CE) Estimate

Diff	CE	Diff	Std	N
0.10	-0.01	0.09	0.23	187487
-0.05	-0.00	-0.05	0.10	210762
-0.05	0.19	0.14	0.16	244064
-0.23	0.00	-0.22	0.24	559547
-0.22	0.25	0.03	0.13	453068
1.62	-0.57	1.05	0.30	1044122
-0.19	0.67	0.48	0.25	1149593
0.51	-0.93	-0.41	0.26	172064
0.16	-0.13	0.03	0.12	322522
0.10	0.00	0.10	0.16	330994
-0.21	0.28	0.07	0.21	716940
-0.23	-0.11	-0.34	0.15	1089663
-0.78	0.21	-0.57	0.28	1318406
-0.99	0.12	-0.88	0.43	1980369
	0.10 -0.05 -0.05 -0.23 -0.22 1.62 -0.19 0.51 0.16 0.10 -0.21 -0.23 -0.78	0.10 -0.01 -0.05 -0.00 -0.05 0.19 -0.23 0.00 -0.22 0.25 1.62 -0.57 -0.19 0.67 0.51 -0.93 0.16 -0.13 0.10 0.00 -0.21 0.28 -0.23 -0.21 -0.78 0.21	0.10 -0.01 0.09 -0.05 -0.00 -0.05 -0.05 0.19 0.14 -0.23 0.00 -0.22 -0.22 0.25 0.03 1.62 -0.57 1.05 -0.19 0.67 0.48 0.51 -0.93 -0.41 0.16 -0.13 0.03 0.10 0.00 0.10 -0.21 0.28 0.07 -0.23 -0.11 -0.57	0.10 -0.01 0.09 0.23 -0.05 -0.00 -0.05 0.10 -0.05 0.19 0.14 0.16 -0.23 0.00 -0.22 0.24 -0.22 0.25 0.03 0.13 1.62 -0.57 1.05 0.30 -0.19 0.67 0.48 0.25 0.51 -0.93 -0.41 0.26 0.16 -0.13 0.03 0.12 0.10 0.00 0.10 0.16 -0.21 0.28 0.07 0.21 -0.23 -0.11 -0.34 0.15 -0.78 0.21 -0.57 0.28

SHIS Support comes from NASA Ames and the Mango Kings

Evolving the Global Observing System

WMO Team

- → CIMSS education and outreach has touched many people
 - * 103 students graduate from AOS with CIMSS advisors most take jobs in govt labs
 - * education and training in classrooms at UW in the virtual laboratory everywhere
 - * over 50 visiting scientists spend a sabbatical at CIMSS every continent participates

CIMSS Graduates

■ 76 Masters ■ 27 Ph.Ds

CIMSS Graduate Students

1979-1980	1987-1988	1993-1994	2000-2001
Michael Kalb MS (NASA Marshall)	Nelson Ferreira PhD (INPE, Brazil)	Walt McKeown PhD (Navy)	Nick Bower PhD (from Curtin Univ)
Tony Siebers MS (NWS)	Richard Frey MS (NASA Langley)	Gilberto Vicente PhD (NASA GSFC)	Monica Harkey MS (UW)
Jim Block MS (NWS)	Arlindo Arriaga MS (EUMETSAT) Grant Carlson MS (NASA Marshall)	Xiaohua Wu PhD (Univ. of Chicago) Wayne Feltz MS (CIMSS)	Michael Pavlonis MS (CIMSS) Kurt Brueske PhD (Air Force)
	Grant Carison W.S (NASA Warshan)	Tim Olander MS (CIMSS)	Kuit Blueske Fild (All Poice)
1980-1981		Tilli Olalidei MS (CIMSS)	2001-2002
Jim Zandlo MS (private sector)	1988-1989		Hong Zhang MS (CIMSS)
Roberta Marshment MS (private sector)	Hyosang Chung MS (Korea Met Agency)	1994-1995	Brian Kabat MS (Air Force)
(4	Laurie Rokke MS (PhD at Oxford)	Yanni Qu PhD (NESDIS)	Sarah Thomas MS (CIMSS)
	Liam Gumley MS (GSFC and CIMSS)	Susan Faust MS (NWS)	,
1981-1982	Kurt Brueske MS (Air Force)	Lan Ge MS (NESDIS)	2002-2003
George Diak PhD (CIMSS)	Murty Divakarla MS	Ben Ho MS (NASA Langley)	Shaima Nasiri PhD (CIMSS)
Roy Spencer PhD (NASA Marshall)	Elaine Prins MS (CIMSS)		
Chris Velden MS (CIMSS)	Chris Scheuer MS (NASA Langley)		
David Keller MS (Air Force)		1995-1996	2003-2004
		Jack Dostalek MS (CIRA)	Mark Gray MS (GSFC)
	1989-1990	Nick Nalli MS (NESDIS)	Giuklia Pannegrossi PhD (Italy)
1982-1983	Allen Huang PhD (CIMSS)	Brad Hoggatt MS (private sector)	Grag McGarragh MS (LaRC)
John Bates MS (NOAA ERL)	Fred Wu PhD (CIMSS)	Dan DeSlover MS (CIMSS)	
Gin Rong Liu MS (Taiwan National U)	Steve Nieman MS (CIMSS)		
	Walt McKeown MS (Navy)	1006 1007	
1004 1005	Hai Yen Zhang MS (CSU)	1996-1997	
1984-1985		Jay Heinzelman MS (SSEC)	
David Donahue MS (NESDIS) Stacey Heikkinin MS	1990-1991	Phil Politowicz MS (SSEC)	
Martin Mlynczak MS (NASA Langley)	Arlindo Arriaga PhD (EUMETSAT)		
Waitin Whyliczak Wis (WASA Langley)	Peter Keehn MS (NASA Goddard)	1997-1998	
	Yanni Qu MS (NESDIS)	Ben Ho PhD (NASA Langley)	
1985-1986	Tuliii Qu Mb (1(Ebb15)	Bormin Huang PhD (CIMSS)	
John Bates PhD (NOAA ERL)		Paul van Delst PhD (CIMSS)	
Allen Huang MS (CIMSS)	1991-1992	Gideon Kinyodah MS (Kenya Met Office)	
Chris Moeller MS (CIMSS)	Robert Purser PhD (NCEP/EMC)	Rose Shie MS (computer science)	
Craig Burfeind MS (private sector)	Kathy Strabala MS (CIMSS)		
		1998-1999	
		Mike Friedman PhD (Oregon State)	
1986-1987	1992-1993	William Badini MS (private sector)	
Louis Garand PhD (Environment Canada)	Daphne Zaras MS (NOAA/NSSL)	Jason Dunion MS (NOAA AOML)	
Gin-Rong Liu PhD (Taiwan National U)	Chia Lee MS (CIMSS)	Rhett Grauman MS (NOAA/NWS)	
Gary Jedlovec PhD (NASA Marshall)	Rongrong Xie MS (NESDIS)	Shaima Nasiri MS (CIMSS)	
Fred Wu MS (CIMSS)	Jason Li MS (NASA Goddard)	1000 2000	
Maria Perrone MS (Rutgers University)		1999-2000	
Tim Schmit MS (CIMSS)		Erik Olson MS (CIMSS)	
		Chris Schmidt MS (CIMSS)	
		Nick Nalli PhD(CIRA)	

Hydra used to analyze the data

Remote Sensing Schools catch on around the world

→ CIMSS in the next 25 years

- * NWP maximizes benefit from remote sensing data
- * spatial, temporal, and spectral resolution increases
- * ocean studies forge ahead
- * reference network establishes climate quality data AERIs supplement in situ observations
- * imaging and sounding functions merge hyperspectral remote sensing matures
- * active complements passive remote sensing
- * land, ocean, and atmosphere are studied fingerprint of climate and climate change emerge
- * global partnerships are forged within GEOSS pulse of the planet is taken

Clouds will get a thorough look with the A-train

The top opportunities for CIMSS with NOAA and NASA in the coming years?

- * to help evolve NOAA remote sensing assets with NPOESS and GOES-R
- * to help build a strong research to operations bridge from a revitalized NASA to a multi-applications oriented NOAA * to help GEOSS realize its potential through open sharing of
- and strong support from the NOAA & NASA environmental remote sensing capabilities
- * to help foster the opportunities for international partnering in the development and demonstration of new remote sensing capabilities (e.g. IGeoLab)

The top challenges for CIMSS with NOAA and NASA in the coming years?

- * to maintain and increase the gains in environmental remote sensing demonstrated by EOS (e.g. AIRS soundings, MODIS polar winds)
- * to sustain a strong viable partnership between government, industry, and university that takes advantages of the unique capabilities of each
- * to assure adequate resources and capabilities are directed toward accomplishing the pending climate tasks

CIMSS has flourished because of

- → good leaders leading good people
- → interesting science instruments and cal/val processing and visualization algorithms and applications

multitudes of data

- → steady sponsorship from NASA and NOAA basic research transfer to operations
- → strong international partnerships global observing system

It has been a great ride – Thank you

