

Introduction to the COMS Program and Development of COMS Meteorological Data Processing System

Hyo-Sang Chung/KMA

2005.07.12

Governmental Support for COMS

- MOST : Ministry of Science and Technology
- MIC : Ministry of Information and Communication
- MOMAF : Ministry of Maritime Affairs and Fisheries
- KMA : Korea Meteorological Administration

Satellite Communication Mission

- In-orbit verification of developed communication technologies
- Experiment of wide-band multi-media communication service

Ocean Monitoring Mission

- Monitoring of marine environments around the Korean peninsula
- Production of fishery information (Chlorophyll, etc.)
- Monitoring of long-term/short-term change of marine ecosystem

Weather Monitoring Mission

- Continuous monitoring of imagery and extracting of meteorological products with high-resolution and multi-spectral imager
- Early detection of special weather such as storm, flood, yellow sand
- Monitoring of long-term change of sea surface temperature and cloud

COMS in Space Dev.

COMS Program

The only geostationary satellite program in the "National Plans for Long Term Plan for Space Development of South Korea ('05.02)"

Milestones for the COMS Program

COMS Mission-1

 ✓ Requirement of Ka-band Payload(TBC)

Frequency (Ka-band)	Uplink : 29.6 ~ 30.0GHz Downlink : 19.6 ~ 20.3GHz				
Minimum EIRP edge of coverage	58dBW				
G/T	13dB/°K				
Bandwidth	400MHz(100MHz/chan nel)				
Beamwidth	0.6degree/each beam				
Coverage	Refer to right figure				

COMS Mission-2

Requirement of Ocean Sensor(TBC)

ltem	Requirements				•	Oce	an S	enso	or Cover	ade			
Spatial Resolution	500m X 5	500m X 500m						N "		one			
Coverage	2,500km	2,500km X 2,500km					 ◄					$\frac{1}{2}$	1
No. of Band	8 fixed b	and						-			. /		~
	Band Center [nm]	Band Width [nm]	Nom. Rad [Wm ⁻² um ⁻¹ sr ⁻¹]	Max. Rad. [Wm ⁻² um ¹ sr ⁻¹]	NEdL	SNR	, ·	. 	2		Ň		
Band Center	412	20	100	150.0	0.100	1000		۲. ۲	~	5	فعهبنه	1	
& Band Width & Nominal	443	20	92.5	145.8	0.085	1090	· .				and the second	¶	
Rad.& Max Rad. & NEdL & SNR (Sensitivity of sensor)	490	20	72.2	115.5	0.067	1170			7		<u> </u>	_	
	555	20	55.3	85.2	0.056	1070			E	Ś			
	625	20	32.0	58.3	0.032	1010		~	U-				1
	670	20	27.1	46.2	0.031	870							
	765	40	17.7	33.0	0.020	860							
	865	40	12.0	23.4	0.016	750							
MTF	≥ 0.3 at Nyquist frequency												
Dynamic Range	≥ 11bit												
Sensor Calibration	 Calibration type : Solar Calibration Accuracy of Radiometric Calibration : ≤ 3% 												
Number of observation	- Total : 8 times · 10:00 ~ 17:00 : 6 times, · 22:00, 02:00 : 2 times												

COMS Mission-3

Meteorology

- ✓ Continuous monitoring of weather events with multi-channel Imager
- ✓ Early detection of sever weather such as tropical cyclones, heavy rainfall, dust out break, etc.
- ✓Long term data acquisition for climate study

Channels

Channel	Spectral band()	Application				
VIS	0.675	Daytime cloud imagery Detection of special event (yellow dust, fire, haze, etc.), Atmospheric motion vector				
SWIR	3.75	Nighttime fog/stratus, Fire detection, Surface temperature				
WV	6.75	Upper atmospheric water vapor, Upper atmospheric motion vector				
WIN1	10.8	Standard IR split window channel (cloud, Sea surface temperature, Yellow sand detection)				
WIN2	12.0	Standard IR split window channel (cloud, Sea surface temperature, Yellow sand detection)				

COMS System Architecture

Major Milestones for COMS Develop.

- Contract with EADS Astrium as a prime contractor: April 2005
- Kickoff Meeting at Astrium: 18-19 May 2005
- System Requirement Review: 13-14 June 2005
- System Design Review: 8-9 August 2005
- Preliminary Design Review: End of November 2005
- Critical Design Review: March 2007
- Launch: End of 2008

GOMS Satellite Overall Configuration

Meteorological Imager(MI)

5 channel MI will be provided from ITT

Geostationary Ocean Color Imager(GOCI)

GOCI will be the first Geostationary Ocean Color Imager and will be manufactured by EADS Astrium

Ka band Communication Payload

Ka band Transponder

Ka Band Antenna

Communication payload is under development by ETRI(Korea)

System Requirements (1)

Satellite Lifetime

- Operational Life > 7 years from the end of IOT period
- Design Life > 10 years

Spacecraft Stabilization

3-axis Stabilized Spacecraft for monitoring any regions at any time

Reliability

- > 0.75 for Meteorological and Ocean Monitoring Mission at End of Life
- > 0.85 for Communication Payload based on 12 years Design Life

Launch Vehicle Compatibility

- Compatible with Ariane, Delta, Atlas, Proton, H-IIA, Sea-Launch, etc.
- Compatible with the Launch vehicle Mission Profiles and Sequences

System Requirements (2)

Orbital Location

- Geosynchronous Orbit at 116.2E or 128.2E
- Location will be finalized after the approval from ITU

Stationkeeping Accuracy

• ± 0.05 ° in longitude and latitude of the nominal orbit location

Image Navigation and Registration (Imager)

- Image Navigation Error within an Image < 56 µrad (2km)
- Image Registration
 - : Within-frame Registration < 42 µrad (1.5km)
 - : 15min Frame-to-Frame Registration < 28 µrad (1km)
 - : 90min Frame-to-Frame Registration < 42 µrad (1.5km)
 - : 24hours Frame-to-Frame Registration < 112 µrad (4km)
- Band-to-Band Co-registration
 - : Visible/IR < 50 µrad , IR/IR < 28 µrad

System Requirements (3)

Image Navigation and Registration (Ocean Color Imager)

- Image Navigation Error within an Image < 28 µrad (1km)
- Image Registration
 - : Within-frame Registration < 28 µrad (1km)
 - : Frame-to-Frame Registration < 28 µrad (1km)

9210090

- Band-to-Band Co-registration
 - : Visible/Visible < 7µrad

Image Navigation

: determining the location of any pixel within an Image in terms of Earth longitude and latitude

Image Registration

: keeping any pixel within an Image pointed to its nominal Earth location within specified accuracy

System Requirements (4)

Mode of Operation

- Stationkeeping Mode
 - : Stationkeeping Frequency shall be determined for the minimal Impact to the Payload Operation
 - : Stationkeeping Maneuver and INR Performance Recovery < 60min.
- Housekeeping Mode
 - : 2 times per day with a Maximum Duration of 10 min.
- Safe-Hold Mode
 - : Ensure the Safety of the Satellite under an anomalous condition
 - : Via Ground Command or By the On-board Computer
- End-of-Life Mode
 - : Move the Spacecraft to 150km above the GEO. Orbit at End of Life

Transfer Orbit Operation

- Arrive at the Target Orbit within 30days after Separation from Launch Veh.
- 6 months IOT to verify the Performance of the Spacecraft and Payloads

Simultaneous Operation of Multiple Payloads

- MI, GOCI and Comm. Payloads shall be Operable Simultaneously
- Not Induce any Interference or Performance Degradation

Processed Meteorological Data

- Data Format : HRIT(High Rate Information Transmission), LRIT
- Delivery Timeliness : within 15min. after the End of Image Acquisition

Space-to-Ground Interface

- Polarization
 - : Telemetry & Command (CP), Raw and Processed Data (LP)
- Modulation
 - : Telemetry & Command PCM/BPSK/PM
 - : Raw Data PCM/QPSK
 - : Processed Data PCM/BPSK
- Bit Error Rate (BER)
 - : Telemetry & Command 10⁻⁶, Raw and Processed Data 10⁻⁸

Processed Data Distribution Coverage

ITU Registration Orbit : 116.2 °E, 128.2°E

ITU Registration Frequency Band

- For Ocean and Meteorological Service and Satellite Operation
 - : 1,670 ~ 1,710 MHz(L-Band): Sensor Data & Processed Data Downlink
 - : 2,025 ~ 2,110 MHz(S-Band): Processed Data & Command Uplink
 - : 2,200 ~ 2,290 MHz(S-Band): Telemetry Downlink
- For Communication Service
 - : 27.5 ~ 30.8 GHz: Ka-Band Uplink
 - : 18.3 ~ 20.7 GHz: Ka-Band Downlink

Case Analyses

- July 31,1998 Shoonchun 187mm/day Mt. Jiri's Heavy rainfall - July 15, 2001 Seoul 273.4mm/day Seoul/Kyungki Prov. **Heavy Rainfall** - Aug. 31, 2002 Kangnung 870.5mm/day TY Rusa's Heavy Rainfall

The Distributions of Daily Rainfall

Mt. Jiri Heavy Rainfall

TY Rusa Heavy Rainfall

Distribution of Hourly Rainfall

- Mt. Jiri Heavy Rainfall

Hourly Rainfall Intensity

- Mt. Jiri's Heavy rainfall

Distribution of Hourly Rainfall

- Seoul/Kyungki Prov. Heavy Rainfall

- Seoul/Kyungki Prov

* Top 5 daily Rainfall : Seoul, Choonyang(*), Hongcheon, Yangpyeong, Incheon

Distribution of Hourly Rainfall

- TY Rusa Heavy Rainfall

No observed data due to record-broken rain

Hourly Rainfall Intensity

- TY Rusa Heavy Rainfall

* Top 5 daily rainfall : Gangneung, Daekwanryoung, Donghae, Sokcho, Chupungryoung

Summary

- Meteorological Effects:
 - Early detecting and continuous monitoring the high impact weathers
 - Improvement of NWP model using satellite data
 - Early detection of aerosol, such as Asian dust, and monitoring of its transport, etc.
 - Long term extraction of climate variation information
- Oceanographical Effects:
 - Reducing the property damages of fishermen
 - preventing the ocean resources from damaging
- Communicational Effect:
 - In-orbit test of developed communication payload

II. The Outline of CMDPS

COMS Meteorological Data Processing System (CMDPS)

- System to produce geophysical parameters from the satellite measured raw radiance data.
- The system includes;
 - ✓ algorithms for each baseline products
 - ✓ various auxiliary data such as the surface emissivity, etc.
 - ✓ radiative transfer model
 - \checkmark calibration monitoring scheme and algorithm
 - ✓ interfaces for between algorithms, and between CMDPS and OS

 \checkmark validation procedures.

CMDPS Data Flow

On-line (Dynamic) Data decoding and reformatting

Baseline products

Group	Product Spatial Temporal		Accuracy	Remarks		
		Resolution	Resolution	(Thres.)		
Cloud	CLD	1x1 pixel	=obs		METRI	
Detection	CSR	~ 100km	=obs		METRI	
AMV	AMV	~ 50km	3 hr.	9 m/s	METRI	
Surface	SST	1x1 pixel	hourly	1.2 K	SNU	
Information	LST	1x1 pixel	hourly	2 K	Kongju NU	
	Sea Ice/SC	1x1 pixel	daily		METRI	
	Insolation	1x1 pixel	hourly	10 %	Pukyoung NU	
Water vapor	UTH	~ 50km	=obs	20 %	Kyoungpook NU	
Information	TPW	~ 50km	=obs	20 %	Kyoungpook NU	
Cloud	CLA	3x3 pixel	=obs		SNU	
Information	CTT/CTH	1x1 pixel or	=obs	3 K	SNU	
		3x3 pixel		1 km		
	Fog	1x1 pixel	=obs		EWU	
	PI	1x1 pixel	=obs	20 % bias	Kangnung NU	
	OLR	~ 10km	hourly	10 %	SNU	
Aerosol	AI	1x1 pixel	=obs		Pusan NU	
Information	AOD	10x10 pixel	=obs	35 %	YSU	

Baseline products

Name	New?	Issues	Remarks
CLD/CLR	No	Accuracy Improvement	Probability Info., Use of NWP products, SFC ¹
LST	Yes	New with enough acc.	SFC is mandatory for enough accuracy,
SST	No	Accuracy Improvement	Different algorithms for spatial and temporal scale
Insolation	Yes	New regression coeffs.	Better reference ground data and CLD information
Snow/Ice	Yes	Important in LSM	Combining with SSM/I, AVHRR, and MODIS
AMV	No	Accuracy Improvement	Height assignment using IR1/WV, IR1/IR2
TPW	Yes	NWP application	Regression with better database
UTH	Yes	NWP application	Regression and Physical approach
CLD Info.	No	Accuracy Improvement	Use of NWP products, better understanding of Chs.
CLD Cls.	No	Accuracy Improvement	Use of NWP products with better RTM
CLD Phs.	Yes	Important for nowcasting	Better understanding of Chs.
Fog	No	Accuracy Improvement	Better threshold values for different conditions
OLR	Yes	Expect better accuracy Better calibration with improved aux. data	
PI	No	Accuracy Improvement Use Microwave data and precise topography	
AI	No	Accuracy Improvement	Better threshold and SFC information
AOD	Yes	Became important info.	Accurate LUT and SFC information

¹ SFC includes the surface information acquired by both off-line and on-line

Baseline products

Key issues

- Is WV channel useful for cloud phase
- How accurate for multi-layer cloud ?

2005. July 12, CIMSS Silver Symposium, Madison. WI.

Cloud Phase-II

Cloud Phase-III

Aerosol Optical Depth-I

METRI 기상연구소

Aerosol Optical Depth-IV

2005. July 12, CIMSS Silver Symposium, Madison. WI.

Aerosol Optical Depth-V

Comparison of Aeronet with GMS5 AOD(2002/3/30-4/30)

Sources of uncertainty(Knapp et al., 2002)

	Source				
Atmospheric	aerosol optical properties (e.g., sphericity,				
	w _o , n(r), refractive index)				
	location of the aerosol layer				
	Rayleigh optical depth				
	gaseous absorption				
Surface	reflectance uncertainty				
	bidirectional reflectance contamination				
Instrument	calibration				
	noise				
Radiative transfer model	plane-parallel approximation				
	multiple scattering				

Other major Task

- Development of validation strategy for the raw and derived products
- Preparation for the user service

