FengYun 2C and It's Application

Celebration of CIMSS's Silver Anniversary

Review of over 25 years' bilateral cooperation

Products from FY2C Meteorological Satellite

P. Zhang on behalf of Xu Jianmin

Visitors from NSMC to CIMSS

- 1980s: Fengxian Zhou, Xia-Lin Ma, Zonghao Wang, Yanni Qu
 - McIDAS was introduced and used on NSMC
 - ITPP PC version was generated and distributed
 - 1990s: Jun Li, Wenjian Zhang
 - ITPP improved version was generated and distributed
 - IAPP was generated and distributed
 - 2000s: Zhongdong Yang, Xuebao Wu, Peng Zhang, Feng Lu
 - IMAPP algorithm and software development
 - GOES calibration

Other short visitors

- Academician: Jianmin Xu
 - Academician: Bolin Zhao
 - Former NSMC director: Chaohua Dong
 - Prof. Yuanjing Zhu

Staff here from NSMC

- Xuanji Wang
- Hong Zhang

CIMSS visitors to NSMC

Tom Achtor, Chris Velden, Hank Revercomb, Jun Li, Allen Huang, Paul Menzel, Liam Gumley, Hal Woolf, Steve Ackerman

WMO - OMM

X-band Antenna

NSMC and NESDIS/ORA

* Working together on WMO Expert Team that is influencing vision of Global Observing System of 2015

* Sharing DB Processing Packages for FY2 plus MODIS & AIRS

* Conducting remote sensing seminars in real and virtual labs

Dr Jun Li of NESDIS/CIMSS awarded title "guest chief scientist' by NSMC in March 2003

Dear Paul, Hank, Steve, and Tom,

I am pleased to inform you that Dr. Jun Li, a scientist at your center, has been awarded the title of "guest chief scientist" on satellite atmospheric sounding by National Satellite Meteorological Center (NSMC) of China in March. He is the first scientist out of NSMC who has received this title. A certificate (Chinese version) has been given to him. From our point of view, Dr. Jun Li's research work, talent, and publications on atmospheric remote sounding during the past 10 years are highly recognized at NSMC. In addition, he has not only made great achievements in research, but also made great contribution in promoting the cooperative research work between NSMC and CIMSS on processing and applying data from both U.S. and Chinese weather satellites.....

Sincerely,

Wenjian Zhang Director General National Satellite Meteorological Center(NSMC) of China

MODIS identifies cloud Classes

By Zhongdong Yang

Sensitivity Study for Land Surface Emissivity by Xuebao Wu

Dust Storm Remote Sensing with 3 TIR channels

By Peng Zhang

EE Effects on GOES-R HES Simulated from MAS data

CIMSS

MODIS sees fires in China

FY1C sees clouds over CONUS

Continuing Collaboration on Cal/Val on Remote Sensing Instruments using instrumented ground sites

Intercalibration of geostationary FY2B and polar orbiting NOAA AVHRR & HIRS demonstrated

It remains to be done routinely

Impact of Cooperation between CIMSS and NSMC

- Benefit to CIMSS
 - Visitors helps to finish CIMSS projects
 - Visitors help to develop software packages for communities
 - ITPP, IAPP, IMAPP
- Benefit to NSMC
 - Satellite data processing software was used for processing FY data
 - The first DB ground station for EOS data in China by Paul and Liam
 - Visitors play key role in China (e.g.)
 - Wenjian Zhang: Director of NSMC
 - Zhongdong Yang: Chief Engineer of NSMC

As far as the overarching issue of the importance of the U.S.-PRC Atmosphere Protocol, there are a number of issues of note:

• Data Access: China currently has a free and open data access policy and plans to continue this policy in the future.

• Future Satellite Coordination: NSMC has indicated a willingness to fly their next generation polar satellites to enhance the NPOESS-Metop constellation by filling potential gaps with its AMSU-like instrument as well as its future ocean color instruments.

• Added Expertise: Bilateral cooperation has opened doors for several Chinese scientists to work in NOAA labs and to contribute to the research programs and to return to China with added expertise for Chinese utilization of the Global Observing System.

• Virtual Lab: US-PRC cooperation has generated interrogation tools for the web based Virtual Lab, which is used for international training exercises by the WMO.

• **DB Data and Software**: Cooperation with China has enabled reception of DB data from FY1B and 1C at several NOAA offices, most notably at the Fairbanks NWS Field Office.

• **RAMSDIS**: While serving as a visiting scientist to CIRA, NSMC's General Director Yang Jun 's expertise was critical to the development of RAMSDIS. RAMSDIS proved a big asset to NOAA/ NWS. Also, RAMSDIS made possible the virtual laboratory for satellite data utilization.

Products from FY2C Meteorological Satellite

Leading Scientist: Xu Jianmin

FY2C Data Processing Team

Fang Xiang, Fan Changyao, Gao Yun, Hu xiuqing, Li Sanmei, Li Yajun, Liu Cheng, Liu Jian, Lu Feng, Lu Naimeng, Luo Jingning, Rong Zhiguo, Shi Chunxiang, Xian di, You ran, Yuan wanping, Wang Baohua, Wang Sujuan, Wang Weihe, Wu Xiao, Wu Xiaojing, Xu Jianmin, Zhang Huayi, Zhang Qisong, Zhang Yuxiang, Zhang Xiaohu, Zhao Hongmiao, Zheng Zhaojun, Zhu Xiaoxiang

Content

- General introduction to FY2C
- FY2C image registration, **navigation**, calibration status
- Products from FY2C

FY2 Meteorological Satellite

FY-2C 5 Channel Radiometer

Channel	Wavelength (µm)	Quantification Level
VIS	0.55 0.90	6 bits
IR1	10.3 11.3	10bits
IR2	11.5 12.5	10bits
IR3	6.3 7.6	10bits
IR4	3.5 4.0	10bits

PREPROCESSING

Status on Image Registration Navigation and Calibration

Image Registration

- Inter-channel
- channel
- Inter-detector for Visible channel

For FY2C Satellite, multi channel observation is such realized:

- Sensors of different channels are located at difference places of the focus plane.
- Image registration is performed at ground.

Inter-Channel Registration

direction

Channel Registration

Visible Channel Multi-detectors Registration

Before

Image Navigation

Speciality: We developed the unique technique to navigate the FY2C image. It doesn't use landmark but full disk image center for the Image Navigation.

- Time series of the past full disk image center and the satellite position are known data for the model.
- FY2C image navigation grid is gained by the solution of a mathematical model.
- 13 parameters for image navigation are gained. 12 of them can be treated as constant in 24 hours.
- All navigation process is done automatically. No any land mark registration or manual operation is performed.
- Except 1or 2 days after orbital and attitude control, the accuracy of prediction grid is IR pixel level.

Time series of the past full disk image center $_{\ensuremath{\bar{\tau}}\ensuremath{\bar{\varsigma}}\xspace}$

→ 行号

Full disk image center is predictable

sin fitter of image center line position

point: real position blue point:point used by sinfitter

Time series of the past full disk image center, notice the vertical movement of the image

Put Earth center at the origin, there is a tendency of turning motion

FY2C_FDI_IR1_NOM_20050507_0000

FY-2B Animation

6/21/2002 -8/29/2002

Calibration with NOAA

Geographic registration

FY-2C IR measurements and BT compared with NOAA

PRODUCT PROCESSING

Layer 05 800hPa Atmosphere Reduction Example

Layer 05 800hPa Incident Radiation

IR Atmosphere Reduction

FY2C Image Broadcasted by TV

Products from FY2C

Name of Product	Coverage	Time/Day
Wind	50°N-50°S 55°E-155°E	4
SST	60°N-60°S 45°E-165°E	8
Upper Troposphere Humidity	60°N-60°S 45°E-165°E	8
ISCCP Data set	60°N-60°S 45°E-165°E	8
Precipitation Index	60°N-60°S 45°E-165°E	8
Precipitation Estimation	60°N-60°S 45°E-165°E	4
Cloud Classification	60°N-60°S 45°E-165°E	8
Cloud Amount	60°N-60°S 45°E-165°E	8
Humidity Profile from Cloud	50°N-50°S 55°E-155°E	8
Perceptible Water in Clear Sky Region	60°N-60°S 45°E-165°E	8
Outgoing Long wave Radiation	60°N-60°S 45°E-165°E	8
Solar Irradiance	60°N-60°S 45°E-165°E	1
Snow Cover	60°N-60°S 45°E-165°E	1
Sea Ice	60°N-60°S 45°E-165°E	1
Flood Monitoring	China	1
Soil Moisture	60°N-60°S 45°E-165°E	1
Fire Monitoring	China	24
Tropical Cyclone Position and Intensity	Western Pacific and India Ocean	24
Sand Storm Monitoring	China and Mongolia	8
Fog	China	24
ТВВ	60°N-60°S 45°E-165°E	8

Cloud Classification

Cloud is defined with topography so that the cloud detection can work for Tibetan Plateau

IR image and cloud classification

FY2C Fog

Atmospheric motion vectors

_ 8 ×

TESTWI~1-[测试]

测试工作站上云导风的结果]

云导风低层风与探空资料风均方差为 云导风低层风与探空资料风绝对值差为 云导风低层风与探空资料风平均误差为 低层风与探空资料风样本数 121 10.125030 7.466383 2.583142

Motion vectors is comparable with sonde data

Precipitation Estimation6 hourly precipitation2005.04.22.1804.23.00

FY2C total precipitable waterFY2C_TPW_MLT_NOM_2FY2C_TPW_MLT_NOM_2

0050507_0600_a.bmp

0050508_0600_a.bmp

FY2C/NOAA OLR comparison

Solar irradiance for China region at 24 April 2005/06Z

Sloar irradiance

VIS image

FY2C fire monitoring

FY2C fire monitoring 2005/03/21/05 26z

NOAA-16 fire monitoring 2005/03/21/05 26Z

FY2C fire monitoring in south east Asia March 21 2005 0529Z

FY2C Flood Monitoring

NOAA-16

200504271441

FY-2C 200504271100

Soil moisture estimated with ground temperature tendency

FY2C静止气象卫星旬干旱监测图 2005年4月中旬

FY2C日积雪覆盖产品 2005年3月31日

FY2C snow cover

Snowy days in the month

FY2C Sea Ice

Regional Sea Ice

Sea ice compared with NOAA

NOAA-16 Sea ice 2005/04/04/04 31Z

FY2C Sea ice 2005/04/04/04 00Z

Regional Sea Ice Antarctic

Tropical Cyclone

Tropical Cyclone position compared with QUIKSCAT

With the bilateral Cooperation

More CIMSS experts' research can be applied to FY2C data processing to bloom the FY2C's application;

- **FY2C** data can be easy to access for CIMSS's Experts;
- Experience in FY2C data processing can be shared with CIMSS's experts to improve the US. Geostationary satellite;
- Celebrating CIMSS's silver anniversary and cheers for 25 years' relationship between CIMSS and NSMC

