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INTRODUCTION

Cirrus located in the Tropical Transition Layer (TTL) have become a
focal point much of research over the last decade. Understanding
their role and contribution to the overall water vapor concentration
in the stratosphere has drawn significant interest.

Recent studies have been conducted to study the ice nucleation
processes and role of aerosols during deep convective events as well
comparing model simulations with in-situ observational data sets.

Simulations in this study will utilize a new microphysical scheme
that has been created called AMPS, which predicts multiple
distributions of CCN and IN, liquid and ice mass spectral.

The ice scheme called SHIPS is unique in that ice particle properties
(such as size, particle density, and crystal habitats) are explicitly
predicted in a CRM (Hashino and Tripoli, 2007, 2008).

A new radiative transfer model to handle ice particles with arbitrary
density and shape was developed for AMPS.

Strong tool that effectively enables the explicit modeling of the TTL
cloud microphysics and dynamical processes.



What isthe TTL...?

 The Tropical Tropopause Layer (TTL) is the layer
between the level of zero net radiative heating which
IS found typically around 15 km (Gettelman et al.,
2004) and the cold point tropopause at 17 to 18 km.

« The TTL layer represents the layer between approx.
14 to 18km alt. through which tropospheric air enters
the stratosphere. It is characterized by high vertical
gradients in water concentration and a local minimum
In temperature (Garrett et al., 2006).

e This layer is characterized by slow ascent and forms
the source region for the stratospheric Brewer-
Dobson circulation (Immler et al., 2008).



'L Cirrus Formation

Two general classes of tropical cirrus

1.) Formation related to detrainment of particles and water
vapor from deep convection (Pfister et al., 2001).

2.) In-situ formation: TTL cirrus formation related to
vertical propagating Kelvin and gravity waves (Boehm and
Verlinde, 2000) while Pfister et al. (2001) argued that they
could form through synoptic scale ascent along isentropic
surfaces.

Formation of Cirrus by direct injection from convective
systems into the TTL most likely moistens the air by
evaporation of the particles (Nielsen et al. 2007)

In situ formation of Cirrus in slowly ascending air will most
always lead to dehydration (Jensen and Pfister, 2004,
Immler et al. 2007)



IMPORTANCE...?

Cirrus play a role in the maintenance of the water vapor
distribution in the Tropics. In the vertical region bounded
by the detrainment layer of deep convection and the
stratosphere, tropical cirrus help regulate the water vapor
concentrations entering the lower stratosphere in the
Tropics (Jensen et al., 1996; Hartmann 2002: Dessler and
Sherwood 2000; etc.)

Up to 20% of the global Tropics are regularly covered by
extensive cirrus systems (Liou, 1986).

These cloud layers can reduce the solar radiation
reaching the earth’s surface due to reflection. These cloud
layers also can absorb a portion of the upwelling IR
radiation emitted by the surface and lower atmosphere
and emit IR at a lower temperature (Mace et al., 2005)

Net effect can be to reduce OLR and thus heating of the
atmosphere




RECENT STUDIES

Recent Campaigns Related to the study of the TTL

Cirrus Regional Study of Tropical Anvils and Cirrus
Layers - Florida Area Cirrus Experiment (CRYSTAL-
FACE), 2002, Jul, Key West, FL

Tropical Warm Pool - International Cloud Experiment
(TWP-ICE), 2006, Jan-Feb, Australia

Costa Rica Aura Validation Experiment (CR-AVE)
2006,Jan-Feb, San Jose, Costa Rica

Tropical Composition, Cloud and Climate Coupling
(TC4), 2007, Jul-Aug, Costa Rica, Panama

These campaigns are crucial for the gathering of
observational data in the TTL and validating remote
sensed space borne observations



UW-NMS

The University of Wisconsin Non-Hydrostatic Modeling System
IS a hon-hydrostatic cloud resolving research model used to

Investigate processes at a large range of scales, from
hemispheric to micro- (3.
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Advanced Microphysics Prediction System

(AMPS) - liquid, ice, aerosol

Hashino and Tripoli (2007 and 2008)

Spectral Habit Ice Prediction System (SHIPS)
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Convective Case #1

» Rigorous Convective Updraft (developing stage)

e Overshooting top
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Convective Case #2

» Typical Convective tower (mature stage)
e Developed convective anvil

Radar Reflectivity (dbz)
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UTILIZING DIFFERENT OBSERVATIONS

ER-2/CF'L TC4-07 Q5auq07 07-927
Attenuated Bockscatter Coefficient and Depolarization

Model
Simulations

Space borne Airborne
observations observations

We will be comparing the ice nucleation and aerosol properties simulated at
the tropopause by NMS/AMPS model to the CloudSat and Calipso
observations during the TC4 campaign as well as the in-situ and remote

sensed ER-2, WB-57, and DC-8 aircraft observations.

* Information: layer optical thickness, number concentration,
e Vertical distribution particle size and aerosols, etc.
e Recognition of the limitations associated with the data sets



ONGOING WORK...

Full simulation of the TTL using the NMS-
AMPS system and TC4 observational data

High-resolution simulation of local cloud
processes for case study dates to determine
cirrus cloud development, maintenance, and
dissipation dynamics.

Aerosol studies to determine the role of
sulfates on ice crystals in the TTL

Validation of high-resolution simulations
through collected data.
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QUESTIONS...?
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