Aerosol-Cloud-Precipitation and Atmospheric Circulation in the Arctic as revieled by CloudSat-CALIPSO during Winter

> J-P Blanchet, É. Girard, P. Grenier, R. Munoz-Alpizar, A. Stefanof, C. Jouan, A. Bertram (UBC),

> > *Department of Earth and Atmospheric Sciences (SCTA) Institute of Environmental Sciences (ISE) University of Quebec at Montreal (UQAM)*

> > > and collaboration with

INO

G. Stephens, D. Winker, J. Jiang, J. Pelon, E. Eloranta CloudSat – CALIPSO – AURA Teams and PEARL / OPAL at Eureka, NU

Funding Agencies

Partners

Sulfate Trend and Seasonal Variation Sulfate Trend and Seasonal Variation Alert, NU

IC_SO4= (ng/m3)

Ref. Gong, 2005

Evidences of aerosol alterations in the Arctic

Bigg (1980) observed sulfuric acid coating on most other aerosol particles during winter

 \Box Borys (1989) observed reduced ice nuclei activity by 10 to 1000 fold in crystal counts during anthropogenic Arctic haze event.

Blanchet-Girard (1994) Dehydration-Greenhouse Feedback (DGF)

Reaction on calcium fluoride *Ref.: Bigg, 1980*

Acid Coated IFN Ice Forming Nuclei

$$
\bigcirc
$$

Sulfate Induced Freezing inhibtion (SIFI)

Flow cell coupled to microscope

Particles after ice nucleation (Ref.: Allan Bertram, UBC)

Acid Coated IFN

PEARLab (CANDAC) at Eureka on Ellesmere Island in the Canadian Arctic Ellesmere Island in the Canadian Arctic(80 deg N, 86 deg W, 610 meters) (80 deg N, 86 deg W, 610 meters)

Methodology: Compare Model Simulations to ground site measurements from Eureka, Alert, Spitsbergen, and Barrow and satellite data…

Cloud Radar Lidar HSRLµwave Radiometer At sea level

Also at 610m

A-Train and PEARL Observations

PEARL

Comparison PEARL – CALIPSO

Ed Eloranta (U. Wisconsin)
Aerosol backscatter cross section 19-Apr-2009

Example of TIC-2b form Aerosol – Clouds from Lidar – Radar Seen at OPAL (Ed Eloranta)

Ref.: eloranta@lidar.ssec.wisc.edu

TIC-2B from PEARL and CALIPSO Simultaneously

7 January 2007, 14h (Ref.: Ed Eloranta, OPAL at Eureka NU)

1 UTC Nighttime Conditions
Image Date: 02/12/2008

Observed and Simulated Aerosols

NARCM: 12 size bins [0.005 to 20 µm] 5 species (SO_4 soot, soil, seasalt, organics) 5 chemistry \rightarrow aerosol

 $0 =$ invalid, 1 = clear air, 2 = cloud, 3 = aerosol, 4 = stratospheric feature, 5 = surface, 6 = subsurface, 7 = no signal (total attenuated)

2007-01-01-15-12-51 UTC Nighttime Conditions
Version: 2.01 Image Date: 02/12/2008

Methodology Thin Ice Cloud classification

Radar – Lidar Comparison

Radar – Lidar DGF Signature

January 19, 2007

Surface Pressure & 500mb Height (~ Mean Temperature in lowest 5 km) (~ Mean Temperature in lowest 5 km)

Non-cloudy probed volumes are assigned an index (α).

$$
\alpha = \frac{w_{\beta} \cdot f(\beta_{532}) + w_{\chi} \cdot g(\chi)}{w_{\beta} + w_{\chi}}
$$

 $\beta_{_{532}}\;$: backscattering at 532 nm \mathcal{X} $\hspace{0.3cm}$: color ratio ($\equiv \beta_{\rm 1064}/\beta_{\rm 532})$ W_{β} and W_{γ} : weigths (2:1)

Color term designed following theoretical considerations from **Liu et al. (2002)**.

Monthly Mean Aerosol – Observed vs Simulated January 2007

Statistics for TIC – Aerosols

January & July 2007

Results

[SO 4] and TIC-2B fraction 8 / 15

TIC-2B/ (TIC-2A+2B)

 $(%)$

no

data

TIC-2B/ (TIC-2A+2B)

Stats from 5 winter months so far(1787 overpasses) (~ 6.5 million profiles) **DEC-06 | JAN-07 | FEB-07** DEC-07 | **JAN-08 | FEB-08** DEC-08 | JAN-09 | FEB-09 Averages over the period

1 ox1o grid cells

TIC-2B higher fractions shifted downwind the prevalent winter circulation compared to $[SO_4]$ higher values, especially northward of 75°N and above 1500 m.

Processes : Vertical Loop **Dynamics Dynamics Radiation Radiation Precipitation Precipitation**

Process #1 – Adiabatic Cooling **Dynamics**

Time Scale : ~ 6 – 24 hours

Time Scale : \sim 1 – 5 days

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0

 $C - 2B$

 $TIC-2C$

mixed-phase

2

-5.0 -4.0 -3.0 -2.0 -1.0

0.0 1.0 2.0 3.0

-8°C

PCP-Water ~ 1 mm Model Bias + 0.3 mm

Time Scale : ~ 1 – 2 weeks

 1.0 0.8 Transmittance 0.6 0.4 $w = 0.40$ g/cm² **Window** $H = 0$ km $H = 1 km$ $H = 2 km$ $\frac{1}{2}$ **FIR**
 CO₂
 CO₂
 CO₂
 FIR
 EX
 EX
 EX
 EX
 EX
 EX
 EX
 EX
 EX $H = 5 km$ $H = 10$ km 60 65 70 75 80 85 90 95 100 **5 km EXAMPLE 24** Transmittance $0.6 0.4$ $w = 0.01$ g/cm² $H = 0$ km $H = 1$ km **1 km** $H = 2 km$ $0.2 H = 5$ km $H = 10 km$ 0.0 80 45 50 55 15 20 25 30 35 40 60 65 70 75 85 10 90 95 100 Wavelength (µm)

Sensitivity of the FIR to Water Vapour Concentration for Arctic Air

Net Effect of all 3 Processes

Total Cooling ≈ -30 to -40°C

Sulphur Sources and AVHRR Temperature Trend

The RHS figure shows the temperature change due to sulfuric acid coating on IFN for the run with high acid concentration minus no acid cases during January. Our model simulations (right) of the Dehydration-Greenhouse Feedback (DGF) process show a similar signature (pattern and strength) over land and sea-ice than observed in the AVHRR 20 year temperature trend.

J-P Blanchet

[20-Year Arctic Winter Seasonal Surface Temperature Trend](http://svs.gsfc.nasa.gov/vis/a000000/a002800/a002835/index.html)

<http://svs.gsfc.nasa.gov/search/Keyword/Arctic.html>

Mean Annual Trend °C / yr

Pavlovic and Blanchet using NARCM

http://www.socc.ca/seaice/seaice_current_e.cfm

Example: ensemble of 12 Months January Example: ensemble of 12 Months January Simulations (perturbed – reference)

Sulphur Sources and AVHRR Temperature Trend

.

.

.

. .

<http://svs.gsfc.nasa.gov/search/Keyword/Arctic.html>

Mean Annual Trend °C / yr

 0.4

.

Active Aleutian volcanoes emit large amount of sulphur in the lower troposphere. This is a strong indication that $\mathsf{SO}_2\mathrm{-}\,\mathsf{SO}_4$ sources are affecting surface temperatures trends shown in AVHRR. It is the signature of the DGF process over sea-ice.

20-Year Arctic Winter Seasonal Surface [Temperature](http://svs.gsfc.nasa.gov/vis/a000000/a002800/a002835/index.html) Trend

20-Year Arctic Winter Seasonal Surface Temperature

http://www.socc.ca/seaice/seaice_current_e.cfm

http://nationalatlas.gov/dynamic/dyn_vol-ak.html

A dynamics-aerosol-clouds-precipitation-radiation Interaction on planetary scale **The Big Picture**

Two Coupled Planetary Scales Feedback Loops

Vertical Branch : Time scale ~ 1 – 5 days (indirect IR-Cloud)

Horizontal Branch : Time scale ~ 1 – 2 weeks (DGF)

Summary

- **In Arctic cold low pressure systems aerosols are long** -range transported and mixed deeply transported and mixed deeply in the troposphere. in the troposphere.
- \blacksquare We have indications that acidic aerosols interact with fast growing TIC-2B scales during Arctic winter with potential effects on weather
and climate.
- Three processes lead the generation of potential energy in the Arctic, controlling the hemispheric circulation: one,
dynamic-adiabatic, is internal and two diabatic processes, dynamic-adiabatic, is internal and two diabatic processes,
cloud-precipitation (TIC-2B) and low water vapour (DGF) can
be altered by anthropogenic acid production.
- Two branches (vertical and horizontal) of a large scale
feedback can lead to cold anomalies and enhanced wir feedback can lead to cold anomalies and enhanced winter storms in the mid-latitudes.
- CloudSat, CALIPSO, Eureka combined to lab experiments
and model simulation are determinant in study this key
climate process.

AVHRR T 20 yr Summer Temperature Trend

NASA/Goddard Space Flight Center

Scientific Visualization Studio, Larry Stock, Robert Gersten based on data analysis by Joey Comiso (NASA)

Mean Annual Trend °C / yr

A rapidly declining perennial sea ice cover in the Arctic, Geophysical Research Letters, Vol. 29, No. 20, October 2002

<http://svs.gsfc.nasa.gov/search/Keyword/Arctic.html>

Sea ice-albedo feedback (+)

Snow-albedo feedback (+)

AVHRR T 20 yr Winter Temperature Trend 1982-2002

NASA/Goddard Space Flight Center Scientific Visualization Studio, Larry Stock, Robert Gersten **(2003)**

Mean Annual Trend °C / yr Mean Annual Trend °C / yr

AVHRR T 20 yr Winter Temperature Trend 1982-2002

NASA/Goddard Space Flight Center Scientific Visualization Studio, Larry Stock, Robert Gersten **(2003)**

Mean Annual Trend °C / yr

CGCM1/IS92a-Winte

Sulphur Sources and AVHRR Temperature Trend

The city of Noril'sk in Russia emits 2.8 million tons of $SO₂$ per year. This is another indication that SO_2 – SO_4 sources are affecting surface temperatures trends, here shown in AVHRR at a mean rate of 0.4C/year (8C in 20 years). It is the signature of the DGF process over land and sea-ice.

Noril'sk 2.8Mt SO₂/yr [20-Year Arctic Winter Seasonal Surface Temperature Trend](http://svs.gsfc.nasa.gov/vis/a000000/a002800/a002835/index.html)

<http://svs.gsfc.nasa.gov/search/Keyword/Arctic.html>

http://www.socc.ca/seaice/seaice_current_e.cfm

Mean Annual Trend °C / yr