Understanding Aerosol-Cloud Interactions In Ice Saturated Environments Using CALIOP And AHSRL

Richard D. Hildner, G. J. Tripoli, Edwin W. Eloranta and Gijs de Boer
Dept. Atmos. Oceanic Sciences, Univ. of Wisconsin, Madison, Wisconsin, USA

Problem
Attempts to model ice clouds using saturation with respect to ice as a sufficient condition produce far too many ice clouds with unrealistic lifetimes. CALIPSO and AHSRL both show the abundance of environments saturated over ice yet failing to produce clouds in these histograms of relative humidity over ice versus backscatter.

AHSRL And Twice Daily Radiosonde Data
CALIPSO And Reanalysis Profiles

Super-saturation with no clouds

Why are ice clouds not nucleating?
-Dynamics of the environment play a role. The meteorological conditions of the arctic region influence the amount of cloud cover and life time.
-Aerosols and their ability to nucleate ice become extremely important factors in the arctic due to their relative scarcity compared to the mid-latitudes. Arctic Aerosols can originate in far off source regions and their composition and history determine their ability to serve as ice forming nuclei.

AHSRL and CALIPSO show examples of aerosols influencing ice nucleation.

-Aerosol plumes eventually become sites of ice nucleation as environments become saturated with respect to ice.
-Both depolarizing and non-depolarizing aerosols can be seen initiating cloud formation indicating ice nucleation, although through very different mechanisms.

Further Research:
Investigating the relationship between different source regions and transport histories of aerosols and their ice nucleating properties with respect to different modes of nucleation. This will be done by cluster backtracking aerosol plumes and confirming this backtracking using CALIPSO. The study will assess their entrance mode into the arctic and relate this to cloud observations with AHSRL while integrating this information into a dynamical model using the NMS-AMPS (Non-Hydrostatic Modeling System with Advanced Microphysical Prediction System).

References: